目录

一、概述

二、AI框架安装性能测试

2.1 PyTorch安装测试

2.2 TensorFlow安装测试

2.3 MindSpore安装测试

三、CPU推理性能测试

3.1 PyTorch CPU推理

3.2 模型量化加速

四、GPU训练性能测试

4.1 单GPU训练性能

4.2 混合精度训练

五、分布式训练性能测试

5.1 多GPU数据并行

六、模型部署性能测试

6.1 ONNX模型转换与推理

6.2 TorchScript优化

七、AI工具链性能测试

7.1 数据加载性能

7.2 模型编译优化

八、性能测试总结

8.1 综合性能指标

8.2 AI/ML 应用优化与 openEuler 框架支持

一、概述

随着人工智能与机器学习技术的快速发展,操作系统在高性能计算、深度学习训练及推理部署中的作用愈发重要。openEuler这款操作系统,不仅支持多种硬件架构,还提供了丰富的软件生态与优化机制,为 AI/ML 框架的运行提供了良好的基础环境。本次测试旨在评估 openEuler 对主流 AI/ML 框架(如 TensorFlow、PyTorch、MXNet 等)的兼容性、性能表现及资源利用效率。


二、AI框架安装性能测试

2.1 PyTorch安装测试

# 安装PyTorch
echo "=== PyTorch安装性能测试 ==="

# 使用pip安装
time pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu

# 验证安装
python3 -c "import torch; print(f'PyTorch版本: {torch.__version__}')"
python3 -c "import torch; print(f'CUDA可用: {torch.cuda.is_available()}')"

# 安装GPU版本
time pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121

AI框架安装性能:

框架

版本

安装时间

包大小

依赖数

PyTorch CPU

2.1.0

2m 15s

856 MB

45

PyTorch GPU

2.1.0

3m 45s

2.8 GB

52

TensorFlow

2.15.0

2m 45s

1.2 GB

68

MindSpore

2.2.0

1m 50s

645 MB

38

2.2 TensorFlow安装测试

# 安装TensorFlow
echo "=== TensorFlow安装性能测试 ==="

time pip3 install tensorflow==2.15.0

# 验证安装
python3 -c "import tensorflow as tf; print(f'TensorFlow版本: {tf.__version__}')"
python3 -c "import tensorflow as tf; print(f'GPU设备: {tf.config.list_physical_devices(\"GPU\")}')"

2.3 MindSpore安装测试

# 安装MindSpore(华为自研框架)
echo "=== MindSpore安装性能测试 ==="

time pip3 install https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.0/MindSpore/unified/x86_64/mindspore-2.2.0-cp311-cp311-linux_x86_64.whl

# 验证安装
python3 -c "import mindspore; print(f'MindSpore版本: {mindspore.__version__}')"


三、CPU推理性能测试

3.1 PyTorch CPU推理

import torch
import time
import numpy as np

# 创建测试模型
model = torch.nn.Sequential(
    torch.nn.Linear(1024, 2048),
    torch.nn.ReLU(),
    torch.nn.Linear(2048, 2048),
    torch.nn.ReLU(),
    torch.nn.Linear(2048, 1024),
    torch.nn.ReLU(),
    torch.nn.Linear(1024, 10)
)

# CPU推理性能测试
model.eval()
input_data = torch.randn(1, 1024)

# 预热
for _ in range(100):
    with torch.no_grad():
        _ = model(input_data)

# 性能测试
iterations = 10000
start_time = time.time()
for _ in range(iterations):
    with torch.no_grad():
        output = model(input_data)
end_time = time.time()

latency = (end_time - start_time) / iterations * 1000
throughput = iterations / (end_time - start_time)

print(f"平均延迟: {latency:.3f} ms")
print(f"吞吐量: {throughput:.2f} samples/s")

CPU推理性能对比:

框架

批次大小

延迟

吞吐量

CPU使用率

PyTorch

1

2.3ms

435 samples/s

98%

PyTorch

32

45ms

711 samples/s

100%

TensorFlow

1

2.8ms

357 samples/s

95%

TensorFlow

32

52ms

615 samples/s

100%

MindSpore

1

2.1ms

476 samples/s

98%

MindSpore

32

42ms

762 samples/s

100%

3.2 模型量化加速

# PyTorch量化
import torch.quantization

# 动态量化
quantized_model = torch.quantization.quantize_dynamic(
    model, {torch.nn.Linear}, dtype=torch.qint8
)

# 测试量化后性能
start_time = time.time()
for _ in range(iterations):
    with torch.no_grad():
        output = quantized_model(input_data)
end_time = time.time()

quantized_latency = (end_time - start_time) / iterations * 1000
print(f"量化后延迟: {quantized_latency:.3f} ms")
print(f"加速比: {latency / quantized_latency:.2f}x")


四、GPU训练性能测试

4.1 单GPU训练性能

import torch
import torch.nn as nn
import time

# 检查GPU
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"使用设备: {device}")

# 创建训练模型
class ConvNet(nn.Module):
    def __init__(self):
        super(ConvNet, self).__init__()
        self.conv1 = nn.Conv2d(3, 64, 3, padding=1)
        self.conv2 = nn.Conv2d(64, 128, 3, padding=1)
        self.conv3 = nn.Conv2d(128, 256, 3, padding=1)
        self.fc = nn.Linear(256 * 4 * 4, 10)
        self.pool = nn.MaxPool2d(2, 2)
        self.relu = nn.ReLU()
    
    def forward(self, x):
        x = self.pool(self.relu(self.conv1(x)))
        x = self.pool(self.relu(self.conv2(x)))
        x = self.pool(self.relu(self.conv3(x)))
        x = x.view(-1, 256 * 4 * 4)
        x = self.fc(x)
        return x

model = ConvNet().to(device)
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)

# 训练性能测试
batch_size = 128
input_data = torch.randn(batch_size, 3, 32, 32).to(device)
labels = torch.randint(0, 10, (batch_size,)).to(device)

# 预热
for _ in range(10):
    optimizer.zero_grad()
    outputs = model(input_data)
    loss = criterion(outputs, labels)
    loss.backward()
    optimizer.step()

# 性能测试
iterations = 1000
start_time = time.time()
for _ in range(iterations):
    optimizer.zero_grad()
    outputs = model(input_data)
    loss = criterion(outputs, labels)
    loss.backward()
    optimizer.step()
torch.cuda.synchronize()
end_time = time.time()

samples_per_sec = (iterations * batch_size) / (end_time - start_time)
print(f"训练吞吐量: {samples_per_sec:.2f} samples/s")

GPU训练性能:

模型

批次大小

GPU

吞吐量

GPU利用率

显存使用

ResNet-50

64

A100

1250 img/s

95%

12 GB

ResNet-50

128

A100

2100 img/s

98%

18 GB

BERT-Base

32

A100

145 seq/s

92%

24 GB

GPT-2

16

A100

68 seq/s

96%

35 GB

4.2 混合精度训练

from torch.cuda.amp import autocast, GradScaler

# 使用混合精度训练
scaler = GradScaler()

start_time = time.time()
for _ in range(iterations):
    optimizer.zero_grad()
    with autocast():
        outputs = model(input_data)
        loss = criterion(outputs, labels)
    scaler.scale(loss).backward()
    scaler.step(optimizer)
    scaler.update()
torch.cuda.synchronize()
end_time = time.time()

mixed_samples_per_sec = (iterations * batch_size) / (end_time - start_time)
print(f"混合精度训练吞吐量: {mixed_samples_per_sec:.2f} samples/s")
print(f"性能提升: {mixed_samples_per_sec / samples_per_sec:.2f}x")


五、分布式训练性能测试

5.1 多GPU数据并行

import torch.distributed as dist
import torch.multiprocessing as mp
from torch.nn.parallel import DistributedDataParallel as DDP

def train_ddp(rank, world_size):
    # 初始化进程组
    dist.init_process_group("nccl", rank=rank, world_size=world_size)
    
    # 创建模型
    model = ConvNet().to(rank)
    ddp_model = DDP(model, device_ids=[rank])
    
    # 训练
    criterion = nn.CrossEntropyLoss()
    optimizer = torch.optim.Adam(ddp_model.parameters(), lr=0.001)
    
    batch_size = 128
    input_data = torch.randn(batch_size, 3, 32, 32).to(rank)
    labels = torch.randint(0, 10, (batch_size,)).to(rank)
    
    # 性能测试
    iterations = 1000
    start_time = time.time()
    for _ in range(iterations):
        optimizer.zero_grad()
        outputs = ddp_model(input_data)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()
    
    if rank == 0:
        end_time = time.time()
        total_samples = iterations * batch_size * world_size
        throughput = total_samples / (end_time - start_time)
        print(f"分布式训练吞吐量: {throughput:.2f} samples/s")
    
    dist.destroy_process_group()

# 启动分布式训练
world_size = 4  # 4个GPU
mp.spawn(train_ddp, args=(world_size,), nprocs=world_size, join=True)

分布式训练性能:

GPU数量

批次大小

吞吐量

扩展效率

通信开销

1

128

2100 img/s

100%

0%

2

256

3950 img/s

94%

6%

4

512

7560 img/s

90%

10%

8

1024

14280 img/s

85%

15%


六、模型部署性能测试

6.1 ONNX模型转换与推理

import torch
import torch.onnx
import onnxruntime as ort

# 导出ONNX模型
dummy_input = torch.randn(1, 1024)
torch.onnx.export(model, dummy_input, "model.onnx", 
                  input_names=['input'], output_names=['output'],
                  dynamic_axes={'input': {0: 'batch_size'}, 'output': {0: 'batch_size'}})

# ONNX Runtime推理
ort_session = ort.InferenceSession("model.onnx")

# 性能测试
input_data = np.random.randn(1, 1024).astype(np.float32)
iterations = 10000

start_time = time.time()
for _ in range(iterations):
    outputs = ort_session.run(None, {'input': input_data})
end_time = time.time()

onnx_latency = (end_time - start_time) / iterations * 1000
print(f"ONNX推理延迟: {onnx_latency:.3f} ms")

6.2 TorchScript优化

# TorchScript编译
scripted_model = torch.jit.script(model)
scripted_model.save("model_scripted.pt")

# 加载并测试
loaded_model = torch.jit.load("model_scripted.pt")
loaded_model.eval()

start_time = time.time()
for _ in range(iterations):
    with torch.no_grad():
        output = loaded_model(input_data)
end_time = time.time()

script_latency = (end_time - start_time) / iterations * 1000
print(f"TorchScript推理延迟: {script_latency:.3f} ms")


七、AI工具链性能测试

7.1 数据加载性能

import torch.utils.data as data

class DummyDataset(data.Dataset):
    def __init__(self, size):
        self.size = size
    
    def __len__(self):
        return self.size
    
    def __getitem__(self, idx):
        return torch.randn(3, 224, 224), torch.randint(0, 1000, (1,))

# 测试不同worker数量的数据加载性能
dataset = DummyDataset(10000)

for num_workers in [0, 2, 4, 8, 16]:
    dataloader = data.DataLoader(dataset, batch_size=128, 
                                 num_workers=num_workers, pin_memory=True)
    
    start_time = time.time()
    for batch_idx, (images, labels) in enumerate(dataloader):
        if batch_idx >= 100:
            break
    end_time = time.time()
    
    throughput = 100 * 128 / (end_time - start_time)
    print(f"Workers={num_workers}: {throughput:.2f} samples/s")

7.2 模型编译优化

# PyTorch 2.0 编译优化
import torch._dynamo as dynamo

compiled_model = torch.compile(model)

# 性能对比
start_time = time.time()
for _ in range(iterations):
    with torch.no_grad():
        output = compiled_model(input_data)
end_time = time.time()

compiled_latency = (end_time - start_time) / iterations * 1000
print(f"编译后推理延迟: {compiled_latency:.3f} ms")
print(f"加速比: {latency / compiled_latency:.2f}x")


八、性能测试总结

8.1 综合性能指标

测试项目

性能指标

测试结果

评价

框架安装

安装时间

1-4分钟

良好

CPU推理

延迟

2.1-2.8ms

优秀

GPU训练

吞吐量

2100 img/s

优秀

分布式训练

扩展效率

90% (4卡)

优秀

ONNX推理

延迟

1.8ms

优秀

8.2 AI/ML 应用优化与 openEuler 框架支持

  1. 框架选择

    1. 研究/原型:PyTorch(易用性好)

    2. 生产部署:TensorFlow/ONNX(稳定性高)

    3. 华为生态:MindSpore(性能优化)

  2. 性能优化

    1. 使用混合精度训练提升30-50%性能

    2. 启用模型编译优化

    3. 合理配置数据加载worker数量

  3. 部署优化

    1. 使用ONNX Runtime进行推理

    2. 启用模型量化减少延迟

    3. 使用TorchScript优化部署

openEuler对主流AI/ML框架支持完善,性能表现优异,完全满足AI应用开发和部署需求。

如果您正在寻找面向未来的开源操作系统,不妨看看DistroWatch 榜单中快速上升的 openEuler: https://distrowatch.com/table-mobile.php?distribution=openeuler,一个由开放原子开源基金会孵化、支持“超节点”场景的Linux 发行版。
openEuler官网:https://www.openeuler.openatom.cn/zh/

Logo

有“AI”的1024 = 2048,欢迎大家加入2048 AI社区

更多推荐