系列篇章💥

No. 文章
1 【AI大模型前沿】深度剖析瑞智病理大模型 RuiPath:如何革新癌症病理诊断技术
2 【AI大模型前沿】清华大学 CLAMP-3:多模态技术引领音乐检索新潮流
3 【AI大模型前沿】浙大携手阿里推出HealthGPT:医学视觉语言大模型助力智能医疗新突破
4 【AI大模型前沿】阿里 QwQ-32B:320 亿参数推理大模型,性能比肩 DeepSeek-R1,免费开源
5 【AI大模型前沿】TRELLIS:微软、清华、中科大联合推出的高质量3D生成模型
6 【AI大模型前沿】Migician:清华、北大、华科联手打造的多图像定位大模型,一键解决安防监控与自动驾驶难题
7 【AI大模型前沿】DeepSeek-V3-0324:AI 模型的全面升级与技术突破
8 【AI大模型前沿】BioMedGPT-R1:清华联合水木分子打造的多模态生物医药大模型,开启智能研发新纪元
9 【AI大模型前沿】DiffRhythm:西北工业大学打造的10秒铸就完整歌曲的AI歌曲生成模型
10 【AI大模型前沿】R1-Omni:阿里开源全模态情感识别与强化学习的创新结合
11 【AI大模型前沿】Qwen2.5-Omni:阿里巴巴的多模态大模型,实现看、听、说、写一体化
12 【AI大模型前沿】SmolDocling:256M参数的轻量级多模态文档处理利器,10分钟搞定百页PDF
13 【AI大模型前沿】Stable Virtual Camera:Stability AI 推出的2D图像转3D视频模型,一键生成沉浸式视频
14 【AI大模型前沿】阿里 Qwen3 震撼开源,模型新王诞生,开启全球大模型新纪元
15 【AI大模型前沿】InternVL:OpenGVLab开源多模态大模型,解锁视觉问答与多语言翻译的全能应用图鉴
16 【AI大模型前沿】Fin-R1:上海财经大学联合财跃星辰推出的金融推理大模型,凭7B参数拿下评测第二,离行业第一仅差3分
17 【AI大模型前沿】Med-R1:基于强化学习的医疗视觉语言模型,突破跨模态医学推理的普适性
18 【AI大模型前沿】Baichuan-M1-14B:百川智能推出专为医疗优化的开源大语言模型
19 【AI大模型前沿】一键生成宫崎骏动画风,EasyControl Ghibli 让照片秒变吉卜力艺术品
20 【AI大模型前沿】TxGemma:谷歌推出的高效药物研发大模型,临床试验预测准确率超90%
21 【AI大模型前沿】F5R-TTS:腾讯推出TTS领域的新王者,又快又准又自然,零样本语音克隆新高度
22 【AI大模型前沿】MiniMind-V:低成本打造超小多模态视觉语言模型(仅需1.3元人民币和1小时)
23 【AI大模型前沿】MoCha:端到端对话角色视频生成模型、电影级对话角色合成黑科技、重新定义动画创作
24 【AI大模型前沿】HuatuoGPT-o1-7B:中英文双语医学推理,打破语言障碍的AI大模型
25 【AI大模型前沿】MedReason:大规模医学推理数据集、借用知识图谱将大模型打造成“医术”专家
26 【AI大模型前沿】SkyReels-V2:昆仑万维开源的无限时长电影生成模型,开启视频生成新纪元
27 【AI大模型前沿】Dia:Nari Labs开源16亿参数TTS模型,只需文本输入,生成媲美真人对话的语音
28 【AI大模型前沿】阿里巴巴开源LHM:单图生成可动画3D人体模型,开启3D建模新纪元
29 【AI大模型前沿】TinyLLaVA-Video-R1:北航开源视频推理模型、小尺寸大智慧、参数少一半,性能翻一番
30 【AI大模型前沿】TTRL:测试时强化学习,开启无标签数据推理新篇章
31 【AI大模型前沿】Aero-1-Audio:Qwen2.5架构加持,轻量级音频模型天花板、吊打Whisper
32 【AI大模型前沿】DianJin-R1:阿里云通义点金联合苏大推出的金融推理增强大模型
33 【AI大模型前沿】VITA-Audio:腾讯开源的高效语音交互多模态大语言模型
34 【AI大模型前沿】Multiverse:全球首个AI多人游戏世界模型,低成本高效率新突破
35 【AI大模型前沿】Seed1.5-VL:多模态理解的效率革新者,以小博大,性能惊艳
36 【AI大模型前沿】ViLAMP:蚂蚁集团和人民大学联手打造的长视频理解利器,单卡处理3小时视频
37 【AI大模型前沿】Muyan-TTS:开源零样本语音合成模型、0.33秒极速生成播客级语音、小白也能玩转AI配音
38 【AI大模型前沿】Dolphin:字节跳动开源文档解析大模型,轻量级、高效、多格式,开启文档处理新时代
39 【AI大模型前沿】ChatTS:字节跳动联合清华大学开源、多模态时序大模型助力时序数据对话与推理
40 【AI大模型前沿】Index-AniSora:B站开源的动漫视频生成模型,助力高效创作
41 【AI大模型前沿】RelightVid:上海 AI Lab联合复旦等高校推出的视频重照明模型
42 【AI大模型前沿】BAGEL:字节跳动开源、多模态大模型的创新突破与实践指南
43 【AI大模型前沿】Matrix-Game:昆仑万维开源大模型,一键生成你的专属虚拟世界
44 【AI大模型前沿】Pixel Reasoner:滑铁卢联合港科大等高校推出的视觉语言模型,助力视觉推理新突破
45 【AI大模型前沿】CoGenAV:多模态语音表征新范式、通义联合深技大打造、噪声环境WER降低70%+
46 【AI大模型前沿】Ming-Lite-Omni:蚂蚁集团开源的统一多模态大模型的创新实践
47 【AI大模型前沿】DeepEyes:小红书与西安交大联合打造的多模态深度思考模型
48 【AI大模型前沿】OmniAudio:阿里通义实验室的空间音频生成模型,开启沉浸式体验新时代
49 【AI大模型前沿】MiniCPM 4.0:面壁智能开源的极致高效端侧大模型(小版本、低消耗、220倍极致提速)
50 【AI大模型前沿】SmolVLA:Hugging Face开源的轻量级视觉-语言-行动机器人模型
51 【AI大模型前沿】Time-R1:伊利诺伊大学香槟分校开源的时间推理语言模型、实现过去→未来全链路推演
52 【AI大模型前沿】MonkeyOCR:基于结构-识别-关系三元组范式的文档解析模型
53 【AI大模型前沿】GLM-4.5:智谱打造的开源SOTA模型,推理、代码与智能体能力融合先锋
54 【AI大模型前沿】百度飞桨PaddleOCR 3.0开源发布,支持多语言、手写体识别,赋能智能文档处理
55 【AI大模型前沿】Stream-Omni:多模态交互的“黄金三角”——视觉、语音、文本的完美融合
56 【AI大模型前沿】Vui:Fluxions-AI开源的轻量级语音对话模型,开启自然语音交互新时代
57 【AI大模型前沿】腾讯AI Lab开源的SongGeneration:音乐生成大模型的技术探索与实践
58 【AI大模型前沿】Osmosis-Structure-0.6B:小型语言模型在结构化信息提取中的突破
59 【AI大模型前沿】Kwai Keye-VL:颠覆认知!国产多模态大模型突然发布,视频理解能力堪比人类
60 【AI大模型前沿】Nanonets-OCR-s:从学术论文到法律合同,智能识别公式、签名、表格与图像
61 【AI大模型前沿】OmniAvatar:浙大联合阿里打造的音频驱动全身视频生成模型
62 【AI大模型前沿】DAMO GRAPE:阿里达摩院与浙江肿瘤医院联合打造的早期胃癌识别AI模型
63 【AI大模型前沿】阿里开源Lingshu:一个模型搞定12种医学影像诊断
64 【AI大模型前沿】原石科技MetaStone-S1:突破性反思型生成式大模型的技术解析与实践指南
65 【AI大模型前沿】清华实验室开源MOSS-TTSD:口语对话语音生成的突破
66 【AI大模型前沿】昆仑万维开源Skywork-R1V3:38B多模态推理模型,高考数学142分刷新开源SOTA
67 【AI大模型前沿】Voxtral:Mistral AI开源的高性价比语音转录与理解模型
68 【AI大模型前沿】Goedel-Prover-V2:普林斯顿联合清华开源的定理证明模型,AI数学研究新里程碑
69 【AI大模型前沿】Seed-X:字节跳动开源的7B参数多语言翻译模型,挑战超大型模型性能
70 【AI大模型前沿】OpenReasoning-Nemotron:英伟达开源的推理利器,助力数学、科学与代码任务
71 【AI大模型前沿】阿里通义千问 Qwen3-Coder:开启智能代码生成与代理式编程新时代
72 【AI大模型前沿】Qwen3-SmVL:基于阿里通义千问3和SmolVLM拼接打造1 GB显存可跑的中文超小多模态大模型
73 【AI大模型前沿】通义万相Wan2.2:阿里270亿参数巨兽开源,消费级显卡就能跑,免费平替Sora上线
74 【AI大模型前沿】Higgs Audio V2杀疯:Boson AI开源语音大模型(克隆声音、同步BGM、低延迟对话一键搞定)
75 【AI大模型前沿】腾讯混元3D世界生成模型HunyuanWorld-1.0:开启沉浸式3D内容创作新纪元
76 【AI大模型前沿】Intern-S1:上海AI Lab打造的科学多模态大模型,助力科研智能化
77 【AI大模型前沿】腾讯混元Dense模型:从智能座舱到客服机器人,用0.5B参数打穿全场景
78 【AI大模型前沿】Qwen-Image:免费开源、写段文案→直接出图→还能继续精修,全程不用PS
79 【AI大模型前沿】小米开源MiDashengLM:语音、音乐、环境声一网打尽、智能座舱直接起飞
80 【AI大模型前沿】InternVL3.5:上海 AI Lab 开源多模态大模型、荣登多模态开源榜首
81 【AI大模型前沿】Qwen3-Max-Preview:阿里通义千问的万亿参数大模型,开启AI新纪元
82 【AI大模型前沿】dots.vlm1:小红书hi lab开源的高性能多模态大模型、免费可商用,图表推理直接封神
83 【AI大模型前沿】GLM-4.5V:智谱最新一代视觉推理模型,开源即巅峰,42项SOTA碾压全场,多模态一键秒杀
84 【AI大模型前沿】Jan-v1:基于阿里云Qwen3-4B-Thinking的高性能本地运行AI模型
85 【AI大模型前沿】KittenTTS:KittenML开源的轻量级文本转语音模型,离线部署与高效性能的完美结合
86 【AI大模型前沿】Baichuan-M2:百川智能开源医疗增强大模型,助力医疗智能化转型
87 【AI大模型前沿】MiroThinker:基于Qwen3构建的开源Agent模型系列,助力复杂任务解决
88 【AI大模型前沿】DINOv3:Meta开源的自监督视觉模型,卫星/医疗/自拍全通杀,性能吊打CLIP全家桶
89 【AI大模型前沿】VibeVoice:微软开源7B模型,跨语言、多说话人、长文本一次到位
90 【AI大模型前沿】Waver 1.0:字节跳动推出的AI视频生成模型,支持文本/图像到高清视频的创作
91 【AI大模型前沿】MobileCLIP2:苹果开发端侧大模型,让手机秒变AI神器、拍照就能写文案、搜图片零误差
92 【AI大模型前沿】MiniCPM-V 4.5:OpenBMB推出的高性能端侧多模态大模型
93 【AI大模型前沿】Step-Audio 2 mini:阶跃星辰开源的端到端语音大模型,听得清楚、想得明白、说得自然
94 【AI大模型前沿】HunyuanWorld-Voyager:腾讯开源的超长漫游世界模型,开启3D场景生成新纪元
95 【AI大模型前沿】EmbeddingGemma:谷歌开源的移动端优先文本嵌入模型,200MB 内存搞定 100 种语言 RAG,性能翻倍
96 【AI大模型前沿】Apertus:瑞士首个开源大模型,多语言支持,合规训练,高效性能
97 【AI大模型前沿】OneCAT:美团联合上交大推出的纯解码器多模态模型
98 【AI大模型前沿】MiniCPM4.1:面壁智能重磅开源,128K长文本推理秒级响应,端侧性能狂飙7倍
99 【AI大模型前沿】VoxCPM:OpenBMB 推出的无分词器 TTS 模型,实现上下文感知语音生成与逼真语音克隆
100 【AI大模型前沿】IBM Granite-Docling-258M:开源企业级文档 AI 模型的创新与应用
101 【AI大模型前沿】小红书开源FireRedTTS-2:突破性多说话人长对话语音生成系统完全解析
102 【AI大模型前沿】PP-OCRv5:百度飞桨的高效多语言文字识别利器,0.07 亿参数狂飙 370 字/秒,支持 40+ 语种
103 【AI大模型前沿】小米AI实验室发布ZipVoice系列语音合成模型,重塑语音交互体验
104 【AI大模型前沿】IndexTTS2:B站开源的零样本语音合成模型,实现情感与时长精准控制
105 【AI大模型前沿】Ling-V2:蚂蚁百灵团队打造的高效智能语言模型
106 【AI大模型前沿】腾讯ARC开源AudioStory:大语言模型驱动的长篇叙事音频生成技术
107 【AI大模型前沿】Mini-o3:字节跳动联合港大推出的开源视觉推理模型
108 【AI大模型前沿】InternVLA-N1:上海 AI Lab 开源的端到端双系统导航大模型
109 【AI大模型前沿】InternVLA-A1:上海AI实验室开源的具身操作大模型,助力机器人实现理解、想象与执行一体化
110 【AI大模型前沿】深度解析DeepSeek-R1-Safe:华为与浙大合作的安全大模型
111 【AI大模型前沿】小米开源语音大模型 Xiaomi-MiMo-Audio:开启语音领域的“LLaMA时刻”
112 【AI大模型前沿】百度Qianfan-VL:企业级多模态大模型的领域增强解决方案,OCR、数学、图表一把抓
113 【AI大模型前沿】Qwen3Guard:阿里云通义千问团队推出的安全防护模型
114 【AI大模型前沿】Qwen3-VL:阿里云通义千问的多模态视觉语言模型,开启智能交互新纪元
115 【AI大模型前沿】Qwen3-Omni:阿里巴巴通义千问团队引领全模态大模型新突破
116 【AI大模型前沿】Qwen3-TTS-Flash:阿里通义的多语言多音色语音合成利器
117 【AI大模型前沿】FLM-Audio:智源研究院开源的全双工音频对话大模型,开启自然流畅语音交互新时代
118 【AI大模型前沿】DeepSeek-V3.2-Exp:基于稀疏注意力机制的高效长文本处理大模型
119 【AI大模型前沿】智谱GLM-4.6:355B参数的旗舰级AI模型,代码能力与推理性能全面升级
120 【AI大模型前沿】Logics-Parsing:阿里巴巴开源的端到端文档解析模型
121 【AI大模型前沿】Ming-UniAudio:蚂蚁集团开源的多功能统一语音大模型
122 【AI大模型前沿】Ling-1T:蚂蚁集团开源万亿参数的高效推理非思考模型
123 【AI大模型前沿】微软UserLM-8b:AI助手的“逼真陪练”,多轮对话精炼利器
124 【AI大模型前沿】NeuTTS Air:Neuphonic打造的超拟真离线语音合成模型
125 【AI大模型前沿】Youtu-Embedding:腾讯优图开源的高性能通用文本表示模型


前言

在自然语言处理领域,文本表示模型一直是研究和应用的核心。一个强大的文本表示模型能够将文本转化为语义丰富的向量,从而支持多种下游任务,如文本检索、语义相似度判断、分类聚类等。腾讯优图实验室开源的 Youtu-Embedding 模型,正是在这一背景下应运而生。它通过大规模语料预训练和创新的微调框架,实现了在多种任务上的卓越表现,为开发者提供了一个强大的工具。
在这里插入图片描述

一、项目概述

Youtu-Embedding 是腾讯优图实验室开发的面向企业级应用的通用文本表示模型。该模型通过大规模语料预训练和创新的微调框架,具备强大的语义理解能力,能够胜任文本检索、意图理解、相似度判断等六大任务。它在中文语义评测基准 CMTEB 上表现优异,广泛适用于企业客服、知识管理、智能问答等场景。

二、核心功能

(一)文本检索

Youtu-Embedding 能够快速从海量文本中检索出与查询内容最相关的文本片段。它通过高效的向量检索技术,将文本转化为语义向量,从而实现精准匹配。这一功能广泛应用于搜索引擎和知识库检索等场景,能够显著提升检索效率和准确性。

(二)意图理解

该模型可以精准识别用户输入的意图,帮助构建智能客服系统。通过深度语义理解,模型能够理解用户问题的真正含义,从而提供更准确的解答。这一功能在智能客服和对话系统中表现卓越,能够显著提升用户体验。

(三)相似度判断

Youtu-Embedding 能够判断两段文本的语义相似度,适用于文本去重和推荐系统等场景。通过计算文本向量之间的相似度,模型可以快速判断文本之间的语义关联,从而实现高效的相似度判断。

(四)分类聚类

该模型可以对文本进行分类或聚类,帮助整理和管理大量文本数据。通过语义向量的聚类分析,模型能够将相似的文本归为一类,从而实现高效的文本分类和聚类管理。

(五)重排序

Youtu-Embedding 能够对检索结果进行优化排序,提升结果的相关性和准确性。通过语义向量的相似度计算,模型可以对检索结果进行重新排序,从而确保最相关的文本排在前面。

(六)支持多任务学习

Youtu-Embedding 通过创新的微调框架,同时支持多种任务,避免任务之间的干扰。这一框架通过统一的数据格式和任务差异化的损失函数,确保模型在多种任务上都能表现出色,从而实现高效的多任务学习。

三、技术揭秘

(一)大规模预训练

Youtu-Embedding 从零开始,使用高达 3 万亿 Token 的中英文语料进行预训练,涵盖丰富的语言表达和语义信息。结合人工标注、真实语料以及大模型辅助生成的合成样本,确保数据贴近真实业务场景,为后续训练打下坚实基础。

(二)语义对齐与理解

通过大规模弱监督数据,模型学会识别“表达不同但意图一致”的句子。在向量空间中建立准确的语义映射,帮助模型更好地理解真实意图,提升语义检索和相似度判断的准确性。

(三)协同 - 判别式微调框架

Youtu-Embedding 设计了独特的协同 - 判别式微调框架,有效解决多任务学习中的“负迁移”问题。通过统一数据格式、任务差异化损失函数和动态单任务采样机制,确保模型在各类任务上都能学得扎实。

(四)双塔式编码器设计

模型采用“双塔”结构,一个编码器处理查询文本,另一个处理候选文本。这种设计不仅提升了检索效率,还通过对比学习强化了模型的区分能力,确保在大规模数据中快速找到最相关的文本。

(五)动态负采样策略

在训练过程中,Youtu-Embedding 引入动态负采样策略,从大规模语料中挖掘困难负样本。通过对比学习,模型能够更好地学习区分正负样本,从而提升检索的准确性和鲁棒性。

(六)轻量化部署优化

Youtu-Embedding 参数量控制在百万级,支持 ONNX 格式导出,可在边缘设备运行。通过轻量化设计,模型在保持高性能的同时,显著降低了部署成本,提升了响应速度,适用于多种实际应用场景。

四、基准评测

Youtu-Embedding 在中文语义评测基准 CMTEB 上取得了优异的成绩。它在 2025 年 9 月的评测中,以 77.58 的高分位居榜首。这一成绩不仅证明了其强大的文本表示能力,也展示了其在多种任务上的均衡表现。
在这里插入图片描述

五、应用场景

(一)企业级智能客服

Youtu-Embedding 能够快速理解用户问题并从知识库中精准检索答案,显著提升客服效率和用户体验。通过精准的意图识别和语义理解,智能客服系统可以更准确地回答用户问题,减少人工干预,降低客服成本。

(二)知识库管理

该模型可以对海量知识文档进行分类、聚类和相似度判断,帮助高效整理和检索知识库内容。通过语义向量的聚类分析,模型能够将相似的文档归为一类,提升知识管理的效率和准确性。

(三)智能问答系统

Youtu-Embedding 能够精准匹配用户问题与知识库中的答案,支持多种语义表达,提升问答系统的准确性和响应速度。通过高效的文本检索和语义理解,模型可以快速找到最相关的答案,提供更智能的问答服务。

(四)内容推荐

通过判断文本相似度,Youtu-Embedding 可以为用户推荐相关性高的内容,提升内容分发的精准度。模型能够根据用户的历史行为和兴趣,推荐最相关的文章、视频或其他内容,提高用户满意度。

(五)知识管理

Youtu-Embedding 可以对文本进行分类和聚类,帮助企业更好地管理和利用知识资产,提升知识的可检索性和可用性。通过语义向量的分析,模型能够将知识资产进行有效分类,方便企业内部的知识共享和管理。

六、快速使用

(一)安装相关依赖

pip install langchain==0.3.27 langchain-community==0.3.29 langchain-huggingface==0.3.1 sentence-transformers==5.1.0 faiss-cpu==1.11.0

(二)langchain集成

import torch
from langchain.docstore.document import Document
from langchain_community.vectorstores import FAISS
from langchain_huggingface.embeddings import HuggingFaceEmbeddings

model_name_or_path = "tencent/Youtu-Embedding"
device = "cuda" if torch.cuda.is_available() else "cpu"

model_kwargs = {
    'trust_remote_code': True,
    'device': device
}

embedder = HuggingFaceEmbeddings(
    model_name=model_name_or_path,
    model_kwargs=model_kwargs,
)

query_instruction = "Instruction: Given a search query, retrieve passages that answer the question \nQuery:"
doc_instruction = ""

data = [
    "Venus is often called Earth's twin because of its similar size and proximity.",
    "Mars, known for its reddish appearance, is often referred to as the Red Planet.",
    "Jupiter, the largest planet in our solar system, has a prominent red spot.",
    "Saturn, famous for its rings, is sometimes mistaken for the Red Planet."
]

documents = [Document(page_content=text, metadata={"id": i}) for i, text in enumerate(data)]
vector_store = FAISS.from_documents(documents, embedder, distance_strategy="MAX_INNER_PRODUCT")

query = "Which planet is known as the Red Planet?"
instructed_query = query_instruction + query
results = vector_store.similarity_search_with_score(instructed_query, k=3)

print(f"Original Query: {query}\n")
print("Results:")
for doc, score in results:
    print(f"- Text: {doc.page_content} (Score: {score:.4f})")

结语

Youtu-Embedding 作为腾讯优图实验室开源的通用文本表示模型,不仅在技术上具有创新性,而且在实际应用中表现出色。它为企业和开发者提供了一个强大的工具,能够显著提升文本处理的效率和准确性。通过开源,腾讯希望促进社区的发展,帮助更多开发者利用这一模型创造更大的价值。

项目地址

  • GitHub 仓库:https://github.com/TencentCloudADP/youtu-embedding
  • Hugging Face 模型库:https://huggingface.co/tencent/Youtu-Embedding
  • arXiv 技术论文:https://arxiv.org/pdf/2508.11442

在这里插入图片描述

🎯🔖更多专栏系列文章:AI大模型提示工程完全指南AI大模型探索之路(零基础入门)AI大模型预训练微调进阶AI大模型开源精选实践AI大模型RAG应用探索实践🔥🔥🔥 其他专栏可以查看博客主页📑

😎 作者介绍:资深程序老猿,从业10年+、互联网系统架构师,目前专注于AIGC的探索(CSDN博客之星|AIGC领域优质创作者)
📖专属社群:欢迎关注【小兵的AI视界】公众号或扫描下方👇二维码,回复‘入群’ 即刻上车,获取邀请链接。
💘领取三大专属福利:1️⃣免费赠送AI+编程📚500本,2️⃣AI技术教程副业资料1套,3️⃣DeepSeek资料教程1套🔥(限前500人)
如果文章内容对您有所触动,别忘了点赞、⭐关注,收藏!加入我们,一起携手同行AI的探索之旅,开启智能时代的大门!

Logo

有“AI”的1024 = 2048,欢迎大家加入2048 AI社区

更多推荐