【深度解析】一文搞懂自注意力机制:大模型背后的数学原理与代码实现
传统模型通常聚焦于X与Y的关联分析,而自注意力机制的创新之处在于揭示了X内部元素间潜在的重要关联。以文本预测任务为例,模型不仅需要理解前文句子的表层含义,还需捕捉句子内部词汇组合对后续内容产生的深层影响。为解决这一挑战,自注意力机制通过动态计算序列中每个元素(如a1与a2、a3的交互关系)的关联强度,结合反向传播算法,智能识别对当前任务最具关键性的特征部分。
本文详细介绍了自注意力机制,这一突破性技术能高效捕捉序列内部元素间的动态关联,显著增强模型泛化能力。文章解释了自注意力机制的基本原理,对比了传统神经网络与自注意力机制的区别,并详细介绍了两种常见的注意力评分函数:加性注意力和缩放点积注意力。最后,文章深入讲解了多头注意力机制的原理,并通过PyTorch代码展示了其实现过程,帮助读者理解这一构成Transformer模型基础架构的核心技术。
一、什么是自注意力机制?
传统模型通常聚焦于X与Y的关联分析,而自注意力机制的创新之处在于揭示了X内部元素间潜在的重要关联。
以文本预测任务为例,模型不仅需要理解前文句子的表层含义,还需捕捉句子内部词汇组合对后续内容产生的深层影响。
为解决这一挑战,自注意力机制通过动态计算序列中每个元素(如a1与a2、a3的交互关系)的关联强度,结合反向传播算法,智能识别对当前任务最具关键性的特征部分。

二、注意力评分函数有哪些?
常见的注意力评分函数有两种,一种是加性注意力,另一种是缩放点积注意力。
加性注意力:该评分函数不用考虑查询q和键k是否长度一致,其公式为:

q代表查询,k代表键,但是自注意力中这两者是相同的,都是输入张量X。

缩放点积注意力:该评分函数需要查询q和键k保持长度一致,其公式为:


三、什么是多头注意力机制?
多头注意力机制就是将多个注意力汇聚的结果拼接在一起,这样得出来的结果会包含更多的行为信息,如下图所示:

代码实现如下:
import torch
import torch.nn as nn
import torch.nn.functional as F
class MultiHeadAttention(nn.Module):
def __init__(self, d_model, num_heads):
super(MultiHeadAttention, self).__init__()
assert d_model % num_heads == 0
# 分割d_model维度为num_heads
self.depth = d_model // num_heads
# 定义线性变换层
self.wq = nn.Linear(d_model, d_model)
self.wk = nn.Linear(d_model, d_model)
self.wv = nn.Linear(d_model, d_model)
# 定义线性变换层来合并多头输出
self.dense = nn.Linear(d_model, d_model)
self.num_heads = num_heads
self.scale = 1 / (self.depth ** 0.5)
def split_heads(self, x, batch_size):
# 将输入x分割成多个头
x = x.reshape(batch_size, -1, self.num_heads, self.depth)
return x.permute(0, 2, 1, 3)
def forward(self, v, k, q, mask=None):
batch_size = q.shape[0]
# 分割头
q = self.split_heads(self.wq(q), batch_size)
k = self.split_heads(self.wk(k), batch_size)
v = self.split_heads(self.wv(v), batch_size)
# 计算注意力分数, 此处为缩放点积注意力
scores = torch.matmul(q, k.transpose(-2, -1)) * self.scale
if mask is not None:
scores = scores.masked_fill(mask == 0, -1e9)
# 应用softmax获得注意力权重
attention_weights = F.softmax(scores, dim=-1)
# 计算加权和
output = torch.matmul(attention_weights, v)
# 合并头
output = output.permute(0, 2, 1, 3).contiguous().reshape(batch_size, -1, self.num_heads * self.depth)
# 应用线性变换层
output = self.dense(output)
return output, attention_weights
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线科技企业深耕十二载,见证过太多因技术卡位而跃迁的案例。那些率先拥抱 AI 的同事,早已在效率与薪资上形成代际优势,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在大模型的学习中的很多困惑。我们整理出这套 AI 大模型突围资料包:
- ✅ 从零到一的 AI 学习路径图
- ✅ 大模型调优实战手册(附医疗/金融等大厂真实案例)
- ✅ 百度/阿里专家闭门录播课
- ✅ 大模型当下最新行业报告
- ✅ 真实大厂面试真题
- ✅ 2025 最新岗位需求图谱
所有资料 ⚡️ ,朋友们如果有需要 《AI大模型入门+进阶学习资源包》,下方扫码获取~
① 全套AI大模型应用开发视频教程
(包含提示工程、RAG、LangChain、Agent、模型微调与部署、DeepSeek等技术点)
② 大模型系统化学习路线
作为学习AI大模型技术的新手,方向至关重要。 正确的学习路线可以为你节省时间,少走弯路;方向不对,努力白费。这里我给大家准备了一份最科学最系统的学习成长路线图和学习规划,带你从零基础入门到精通!
③ 大模型学习书籍&文档
学习AI大模型离不开书籍文档,我精选了一系列大模型技术的书籍和学习文档(电子版),它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。
④ AI大模型最新行业报告
2025最新行业报告,针对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。
⑤ 大模型项目实战&配套源码
学以致用,在项目实战中检验和巩固你所学到的知识,同时为你找工作就业和职业发展打下坚实的基础。
⑥ 大模型大厂面试真题
面试不仅是技术的较量,更需要充分的准备。在你已经掌握了大模型技术之后,就需要开始准备面试,我精心整理了一份大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。

以上资料如何领取?

为什么大家都在学大模型?
最近科技巨头英特尔宣布裁员2万人,传统岗位不断缩减,但AI相关技术岗疯狂扩招,有3-5年经验,大厂薪资就能给到50K*20薪!

不出1年,“有AI项目经验”将成为投递简历的门槛。
风口之下,与其像“温水煮青蛙”一样坐等被行业淘汰,不如先人一步,掌握AI大模型原理+应用技术+项目实操经验,“顺风”翻盘!

这些资料真的有用吗?
这份资料由我和鲁为民博士(北京清华大学学士和美国加州理工学院博士)共同整理,现任上海殷泊信息科技CEO,其创立的MoPaaS云平台获Forrester全球’强劲表现者’认证,服务航天科工、国家电网等1000+企业,以第一作者在IEEE Transactions发表论文50+篇,获NASA JPL火星探测系统强化学习专利等35项中美专利。本套AI大模型课程由清华大学-加州理工双料博士、吴文俊人工智能奖得主鲁为民教授领衔研发。
资料内容涵盖了从入门到进阶的各类视频教程和实战项目,无论你是小白还是有些技术基础的技术人员,这份资料都绝对能帮助你提升薪资待遇,转行大模型岗位。

以上全套大模型资料如何领取?

更多推荐



所有评论(0)