SPI设备驱动
一.SPI 子系统结构
SPI 子系统中包含有 SPI控制器和SPI设备两类硬件。内核对此抽象出了三个数据结构:
spi_master
:用来表示一个SPI控制器;spi_device
:用来表示一个SPI设备;spi_driver
:与SPI设备对应的SPI驱动。
======================================
spi_master
结构中最重要的成员是transfer
函数指针,由它实现SPI控制器的数据传输功能。
struct spi_master {
struct device dev;
struct list_head list;
u32 slave;
s16 bus_num; //第几条总线
u16 num_chipselect; //支持的片选引脚个数
u16 dma_alignment;
u16 mode_bits; //SPI控制器支持的工作模式
u32 bits_per_word_mask; //一次传输几位
#define SPI_BPW_MASK(bits) BIT((bits) - 1)
#define SPI_BIT_MASK(bits) (((bits) == 32) ? ~0U : (BIT(bits) - 1))
#define SPI_BPW_RANGE_MASK(min, max) (SPI_BIT_MASK(max) - SPI_BIT_MASK(min - 1))
/* 最大/最小传输速率 */
u32 min_speed_hz;
u32 max_speed_hz;
/* other constraints relevant to this driver */
u16 flags;
#define SPI_MASTER_HALF_DUPLEX BIT(0) /* can't do full duplex */
#define SPI_MASTER_NO_RX BIT(1) /* can't do buffer read */
#define SPI_MASTER_NO_TX BIT(2) /* can't do buffer write */
#define SPI_MASTER_MUST_RX BIT(3) /* requires rx */
#define SPI_MASTER_MUST_TX BIT(4) /* requires tx */
/* lock and mutex for SPI bus locking */
spinlock_t bus_lock_spinlock;
struct mutex bus_lock_mutex;
/* flag indicating that the SPI bus is locked for exclusive use */
bool bus_lock_flag;
/*设置spi总线工作模式,频率等*/
int (*setup)(struct spi_device *spi);
/*spi 传输方法*/
int (*transfer)(struct spi_device *spi,
struct spi_message *mesg);
void (*cleanup)(struct spi_device *spi);
bool (*can_dma)(struct spi_master *master,
struct spi_device *spi,
struct spi_transfer *xfer);
bool queued;
struct kthread_worker kworker;
struct task_struct *kworker_task;
struct kthread_work pump_messages;
spinlock_t queue_lock;
struct list_head queue;
struct spi_message *cur_msg;
bool idling; //空闲
bool busy; //忙
bool running; //运行中
bool rt;
bool auto_runtime_pm;
bool cur_msg_prepared;
bool cur_msg_mapped;
struct completion xfer_completion;
size_t max_dma_len;
int (*prepare_transfer_hardware)(struct spi_master *master);
int (*transfer_one_message)(struct spi_master *master,
struct spi_message *mesg);
int (*unprepare_transfer_hardware)(struct spi_master *master);
int (*prepare_message)(struct spi_master *master,
struct spi_message *message);
int (*unprepare_message)(struct spi_master *master,
struct spi_message *message);
void (*set_cs)(struct spi_device *spi, bool enable);
int (*transfer_one)(struct spi_master *master, struct spi_device *spi,
struct spi_transfer *transfer);
void (*handle_err)(struct spi_master *master,
struct spi_message *message);
/* gpio chip select */
int *cs_gpios;
/* statistics */
struct spi_statistics statistics;
/* DMA channels for use with core dmaengine helpers */
struct dma_chan *dma_tx;
struct dma_chan *dma_rx;
/* dummy data for full duplex devices */
void *dummy_rx;
void *dummy_tx;
};
spi_device
结构体里面记录有设备的片选引脚、频率、挂在哪个SPI控制器下面等信息。
struct spi_device {
struct device dev;
struct spi_master *master; //设备挂在的对应控制器
u32 max_speed_hz; //该设备能支持的SPI时钟最大值
u8 chip_select; //是这个spi_master下的第几个设备
u8 bits_per_word; //每次传输的位数,bits_per_word是可以大于32的,也就是每次SPI传输可能会发送多于32位的数据,这适用于DMA突发传输
u16 mode; //工作模式
#define SPI_CPHA 0x01 /* 在第1个周期采样,在第2个周期采样? */
#define SPI_CPOL 0x02 /* 平时时钟极性 */
#define SPI_MODE_0 (0|0) /* (original MicroWire) */
#define SPI_MODE_1 (0|SPI_CPHA)
#define SPI_MODE_2 (SPI_CPOL|0)
#define SPI_MODE_3 (SPI_CPOL|SPI_CPHA)
#define SPI_CS_HIGH 0x04 /* 一般来说片选引脚时低电平有效,SPI_CS_HIGH表示高电平有效 */
#define SPI_LSB_FIRST 0x08 /* 一般来说先传输MSB(最高位),SPI_LSB_FIRST表示先传LSB(最低位),很多SPI控制器并不支持SPI_LSB_FIRST */
#define SPI_3WIRE 0x10 /* SO、SI共用一条线 */
#define SPI_LOOP 0x20 /* 回环模式,就是SO、SI连接在一起 */
#define SPI_NO_CS 0x40 /* 只有一个SPI设备,没有片选信号,也不需要片选信号 */
#define SPI_READY 0x80 /* SPI从设备可以拉低信号,表示暂停、表示未就绪 */
#define SPI_TX_DUAL 0x100 /* 发送数据时有2条信号线 */
#define SPI_TX_QUAD 0x200 /* 发送数据时有4条信号线 */
#define SPI_RX_DUAL 0x400 /* 接收数据时有2条信号线 */
#define SPI_RX_QUAD 0x800 /* 接收数据时有4条信号线 */
#define SPI_SLAVE_MODE 0x1000 /* enabled spi slave mode */
int irq;
void *controller_state;
void *controller_data;
char modalias[SPI_NAME_SIZE];
int cs_gpio; //这是可选项,也可以把spi_device的片选引脚记录在这里
/* the statistics */
struct spi_statistics statistics;
};
spi_driver
结构体是”SPI总线设备驱动模型”中的一部分。
struct spi_driver {
const struct spi_device_id *id_table;
int (*probe)(struct spi_device *spi);
int (*remove)(struct spi_device *spi);
void (*shutdown)(struct spi_device *spi);
struct device_driver driver;
};
SPI 子系统中包含有 SPI控制器和SPI设备两类硬件。对应就有SPI控制器驱动和SPI设备驱动,SPI控制器驱动提供SPI的传输能力,SPI设备驱动提供对SPI设备的访问能力。
=============================================
二.SPI控制器驱动
SPI控制器驱动基于"平台总线设备驱动"模型实现,在设备树里描述SPI控制器的硬件信息,在设备树子节点里描述挂在下面的SPI设备的信息,platform_devide使用设备树描述生成,platform_driver与platform_devide二者匹配成功后,调用platform_driver中的probe函数,probe函数会分配、设置、注册一个spi_master结构体,并且解析设备树的spi子节点,生成spi_device。
SPI设备驱动
跟"平台总线设备驱动模型"类似,Linux中也有一个"SPI总线设备驱动模型",SPI设备驱动基于"SPI总线设备驱动"模型实现。
spi_device
来自设备树(由SPI控制器驱动解析完成),用来描述SPI设备,比如它的片选引脚、频率,可以来自设备树:比如由SPI控制器驱动程序解析设备树后创建、注册spi_device;可以来自C文件:比如使用spi_register_board_info创建、注册spi_device
spi_device:每个spi_device下都有一个spi_master。每个SPI设备,肯定挂载到了一个SPI控制器,比如ICM20608挂载到了6ULL的ECSPI3接口上。
&ecspi3 {
fsl,spi-num-chipselects = <1>;
cs-gpios = <&gpio1 20 GPIO_ACTIVE_LOW>;
pinctrl-names = "default";
pinctrl-0 = <&pinctrl_ecspi3>;
status = "okay";
spidev: icm20608@0 {
compatible = "my,icm20608";
spi-max-frequency = <8000000>;
reg = <0>;
};
};
“fsl,spi-num-chipselects”属性为 1,表示只有一个设备
“cs-gpios”属性,也就是片选信号,SPI 主机驱动就会控制片选引脚
“pinctrl-names”属性,也就是 SPI 设备所使用的 IO 名字
“pinctrl-0”属性,也就是所使用的 IO 对应的 pinctrl 节点
“status”属性为“okay”
每一个 SPI 设备都采用一个子节点来描述其设备信息,icm20608 连接在 ECSPI3 的第 0 个通道上,因此@后面为 0
SPI 设备的 compatible 属性值,用于匹配设备驱动
“spi-max-frequency”属性设置 SPI 控制器的最高频率,这个要根据使用的SPI 设备来设置
icm20608 连接在通道 0 上,因此 reg 为 0。
-----------------------------------------------------------------------------
在 imx6ull-alientek-emmc.dts 文件中添加 ICM20608 所使用的 IO 信息,在 iomuxc 节点
中添加一个新的子节点来描述 ICM20608 所使用的 SPI 引脚
pinctrl_ecspi3: icm20608 {
fsl,pins = <
MX6UL_PAD_UART2_TX_DATA__GPIO1_IO20 0x10b0 /* CS */
MX6UL_PAD_UART2_RX_DATA__ECSPI3_SCLK 0x10b1 /* SCLK */
MX6UL_PAD_UART2_RTS_B__ECSPI3_MISO 0x10b1 /* MISO */
MX6UL_PAD_UART2_CTS_B__ECSPI3_MOSI 0x10b1 /* MOSI */
>;
};
-----------------------------------------------------------------------------
spi_driver
使用 .c 文件实现,结构体里面有id_table表示能支持哪些SPI设备,驱动开发人员要实现probe函数。
申请或者 定义一个spi_driver,然后初始化spi_driver中的各个成员变量,当SPI设备和驱动匹配以后,spi_driver下的probe函数就会执行!spi_driver初始化成功以后需要向内核注册,函数为:spi_register_driver,当注销驱动的时候需要spi_unregister_driver。
三.SPI数据传输接口
用到两个重要的结构体:spi_transfer和spi_message
struct spi_message {
struct list_head transfers; //链表,用来管理多个spi_transfer
struct spi_device *spi;
unsigned is_dma_mapped:1;
void (*complete)(void *context);
void *context;
unsigned frame_length;
unsigned actual_length;
int status;
struct list_head queue;
void *state;
struct list_head resources;
};
spi_transfer用来构建收发数据内容。
struct spi_transfer {
const void *tx_buf; //发送buf
void *rx_buf; //结构buf
unsigned len; //长度
dma_addr_t tx_dma;
dma_addr_t rx_dma;
struct sg_table tx_sg;
struct sg_table rx_sg;
unsigned cs_change:1;
unsigned tx_nbits:3;
unsigned rx_nbits:3;
#define SPI_NBITS_SINGLE 0x01 /* 1bit transfer */
#define SPI_NBITS_DUAL 0x02 /* 2bits transfer */
#define SPI_NBITS_QUAD 0x04 /* 4bits transfer */
u8 bits_per_word;
u16 delay_usecs;
u32 speed_hz;
struct list_head transfer_list;
};
构建spi_transfer,然后将其打包到spi_message里面,需要使用spi_message_init初始化spi_message,然后在使用spi_message_add_tail将spi_transfer添加到spi_message里面,最终使用spi_sync和spi_async来发送。
======================================================
代码实现
icm20608.c
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/fs.h>
#include <linux/slab.h>
#include <linux/uaccess.h>
#include <linux/io.h>
#include <linux/cdev.h>
#include <linux/device.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/gpio.h>
#include <linux/of_gpio.h>
#include <linux/string.h>
#include <linux/irq.h>
#include <asm/mach/map.h>
#include <asm/uaccess.h>
#include <asm/io.h>
#include <linux/interrupt.h>
#include <linux/input.h>
#include <linux/spi/spi.h>
#include <linux/delay.h>
#include "icm20608reg.h"
#define ICM20608_CNT 1
#define ICM20608_NAME "icm20608"
/* 设备结构体 */
struct icm20608_dev {
int major;
int minor;
dev_t devid;
struct cdev cdev;
struct class *class;
struct device *device;
void *private_data;
int cs_gpio;
struct device_node *nd;
signed int gyro_x_adc; /* 陀螺仪X轴原始值 */
signed int gyro_y_adc; /* 陀螺仪Y轴原始值 */
signed int gyro_z_adc; /* 陀螺仪Z轴原始值 */
signed int accel_x_adc; /* 加速度计X轴原始值 */
signed int accel_y_adc; /* 加速度计Y轴原始值 */
signed int accel_z_adc; /* 加速度计Z轴原始值 */
signed int temp_adc; /* 温度原始值 */
};
static struct icm20608_dev icm20608dev;
#if 0
/* SPI读寄存器 */
static int icm20608_read_regs(struct icm20608_dev *dev, u8 reg, void *buf, int len)
{
int ret = 0;
unsigned char txdata[len];
struct spi_message m;
struct spi_transfer *t;
struct spi_device *spi = (struct spi_device *)dev->private_data;
/* 片选拉低 */
gpio_set_value(dev->cs_gpio, 0);
/* 构建spi_transfer */
t = kzalloc(sizeof(struct spi_transfer), GFP_KERNEL);
/* 第一步:发送要读取的寄存器地址 */
txdata[0] = reg | 0x80;
t->tx_buf = txdata;
t->len = 1;
spi_message_init(&m);
spi_message_add_tail(t, &m);
ret = spi_sync(spi, &m);
/* 第二步,读取数据 */
txdata[0] = 0xff; /* 无效的 */
t->rx_buf = buf;
t->len = len;
spi_message_init(&m);
spi_message_add_tail(t, &m);
ret = spi_sync(spi, &m);
kfree(t);
gpio_set_value(dev->cs_gpio, 1); /* 片选拉高 */
}
/* SPI写寄存器 */
static int icm20608_write_regs(struct icm20608_dev *dev, u8 reg, u8 *buf, int len)
{
int ret = 0;
unsigned char txdata[len];
struct spi_message m;
struct spi_transfer *t;
struct spi_device *spi = (struct spi_device *)dev->private_data;
/* 片选拉低 */
gpio_set_value(dev->cs_gpio, 0);
/* 构建spi_transfer */
t = kzalloc(sizeof(struct spi_transfer), GFP_KERNEL);
/* 第一步:发送要写的寄存器地址 */
txdata[0] = reg & ~0x80;
t->tx_buf = txdata;
t->len = 1;
spi_message_init(&m);
spi_message_add_tail(t, &m);
ret = spi_sync(spi, &m);
/* 第二步,读取数据 */
t->tx_buf = buf;
t->len = len;
spi_message_init(&m);
spi_message_add_tail(t, &m);
ret = spi_sync(spi, &m);
kfree(t);
gpio_set_value(dev->cs_gpio, 1); /* 片选拉高 */
return ret;
}
#endif
/* SPI读寄存器 */
static int icm20608_read_regs(struct icm20608_dev *dev, u8 reg, void *buf, int len)
{
u8 data = 0;
struct spi_device *spi = (struct spi_device *)dev->private_data;
/* 片选拉低 */
//gpio_set_value(dev->cs_gpio, 0);
data = reg | 0x80;
spi_write_then_read(spi, &data, 1, buf, len);
//spi_write(spi, &data, 1); /* 发送要读取的寄存器地址 */
//spi_read(spi, buf, len);/* 读取数据 */
//gpio_set_value(dev->cs_gpio, 1); /* 片选拉高 */
return 0;
}
/* SPI写寄存器 */
static int icm20608_write_regs(struct icm20608_dev *dev, u8 reg, u8 *buf, int len)
{
u8 data = 0;
u8 *txdata;
struct spi_device *spi = (struct spi_device *)dev->private_data;
/* 片选拉低 */
//gpio_set_value(dev->cs_gpio, 0);
txdata = kzalloc(len + 1, GFP_KERNEL);
txdata[0] = reg & ~0x80; /* 要写的寄存器地址 */
memcpy(&txdata[1], buf, len); /* 要发送的数据拷贝到txdata里面 */
spi_write(spi, txdata, len + 1); /* 发送要写的寄存器地址 */
//spi_write(spi, &data, 1); /* 发送要写的寄存器地址 */
//spi_write(spi, buf, len); /* 发送要写的寄存器地址 */
kfree(txdata);
//gpio_set_value(dev->cs_gpio, 1); /* 片选拉高 */
return 0;
}
/* ICM20608读取单个寄存器 */
static unsigned char icm20608_read_onereg(struct icm20608_dev *dev, u8 reg)
{
u8 data = 0;
icm20608_read_regs(dev, reg, &data, 1);
return data;
}
/* ICM20608写一个寄存器 */
static void icm20608_write_onereg(struct icm20608_dev *dev, u8 reg, u8 value)
{
u8 buf = value;
icm20608_write_regs(dev, reg, &buf, 1);
}
/*
* @description : 读取ICM20608的数据,读取原始数据,包括三轴陀螺仪、
* : 三轴加速度计和内部温度。
* @param - dev : ICM20608设备
* @return : 无。
*/
void icm20608_readdata(struct icm20608_dev *dev)
{
unsigned char data[14];
icm20608_read_regs(dev, ICM20_ACCEL_XOUT_H, data, 14);
dev->accel_x_adc = (signed short)((data[0] << 8) | data[1]);
dev->accel_y_adc = (signed short)((data[2] << 8) | data[3]);
dev->accel_z_adc = (signed short)((data[4] << 8) | data[5]);
dev->temp_adc = (signed short)((data[6] << 8) | data[7]);
dev->gyro_x_adc = (signed short)((data[8] << 8) | data[9]);
dev->gyro_y_adc = (signed short)((data[10] << 8) | data[11]);
dev->gyro_z_adc = (signed short)((data[12] << 8) | data[13]);
}
/* ICM20608初始化 */
void icm20608_reginit(struct icm20608_dev *dev)
{
u8 value = 0;
icm20608_write_onereg(dev, ICM20_PWR_MGMT_1, 0x80); /* 复位,复位后为0x40,睡眠模式 */
mdelay(50);
icm20608_write_onereg(dev, ICM20_PWR_MGMT_1, 0x01); /* 关闭睡眠,自动选择时钟 */
mdelay(50);
value = icm20608_read_onereg(dev, ICM20_WHO_AM_I);
printk("ICM20608 ID = %#X\r\n", value);
value = icm20608_read_onereg(dev, ICM20_PWR_MGMT_1);
printk("ICM20_PWR_MGMT_1 = %#X\r\n", value);
icm20608_write_onereg(&icm20608dev, ICM20_SMPLRT_DIV, 0x00); /* 输出速率是内部采样率 */
icm20608_write_onereg(&icm20608dev, ICM20_GYRO_CONFIG, 0x18); /* 陀螺仪±2000dps量程 */
icm20608_write_onereg(&icm20608dev, ICM20_ACCEL_CONFIG, 0x18); /* 加速度计±16G量程 */
icm20608_write_onereg(&icm20608dev, ICM20_CONFIG, 0x04); /* 陀螺仪低通滤波BW=20Hz */
icm20608_write_onereg(&icm20608dev, ICM20_ACCEL_CONFIG2, 0x04); /* 加速度计低通滤波BW=21.2Hz */
icm20608_write_onereg(&icm20608dev, ICM20_PWR_MGMT_2, 0x00); /* 打开加速度计和陀螺仪所有轴 */
icm20608_write_onereg(&icm20608dev, ICM20_LP_MODE_CFG, 0x00); /* 关闭低功耗 */
icm20608_write_onereg(&icm20608dev, ICM20_FIFO_EN, 0x00); /* 关闭FIFO */
}
static int icm20608_open(struct inode *inode, struct file *filp)
{
filp->private_data = &icm20608dev; /* 设置私有数据 */
return 0;
}
ssize_t icm20608_read(struct file *filp, char __user *buf, size_t cnt, loff_t *off)
{
signed int data[7];
long err = 0;
struct icm20608_dev *dev = (struct icm20608_dev *)filp->private_data;
icm20608_readdata(dev);
data[0] = dev->gyro_x_adc;
data[1] = dev->gyro_y_adc;
data[2] = dev->gyro_z_adc;
data[3] = dev->accel_x_adc;
data[4] = dev->accel_y_adc;
data[5] = dev->accel_z_adc;
data[6] = dev->temp_adc;
err = copy_to_user(buf, data, sizeof(data));
return 0;
}
static int icm20608_release(struct inode *inode, struct file *filp)
{
return 0;
}
static const struct file_operations icm20608_fops = {
.owner = THIS_MODULE,
.open = icm20608_open,
.read = icm20608_read,
.release= icm20608_release,
};
static int icm20608_probe(struct spi_device *spi)
{
int ret = 0;
printk("icm20608_probe\r\n");
/* 搭建字符设备驱动框架,在/dev/ */
/* 2,注册字符设备 */
icm20608dev.major = 0; /* 由系统分配主设备号 */
if(icm20608dev.major){ /* 给定主设备号 */
icm20608dev.devid = MKDEV(icm20608dev.major, 0);
ret = register_chrdev_region(icm20608dev.devid, ICM20608_CNT, ICM20608_NAME);
} else { /* 没有给定主设备号 */
ret = alloc_chrdev_region(&icm20608dev.devid, 0, ICM20608_CNT, ICM20608_NAME);
icm20608dev.major = MAJOR(icm20608dev.devid);
icm20608dev.minor = MINOR(icm20608dev.devid);
}
if(ret < 0) {
printk("icm20608 chrdev_region err!\r\n");
goto fail_devid;
}
printk("icm20608 major=%d, minor=%d\r\n", icm20608dev.major, icm20608dev.minor);
/* 3,注册字符设备 */
icm20608dev.cdev.owner = THIS_MODULE;
cdev_init(&icm20608dev.cdev, &icm20608_fops);
ret = cdev_add(&icm20608dev.cdev, icm20608dev.devid, ICM20608_CNT);
if(ret < 0) {
goto fail_cdev;
}
/* 4,自动创建设备节点 */
icm20608dev.class = class_create(THIS_MODULE, ICM20608_NAME);
if (IS_ERR(icm20608dev.class)) {
ret = PTR_ERR(icm20608dev.class);
goto fail_class;
}
icm20608dev.device = device_create(icm20608dev.class, NULL,
icm20608dev.devid, NULL, ICM20608_NAME);
if (IS_ERR(icm20608dev.device)) {
ret = PTR_ERR(icm20608dev.device);
goto fail_device;
}
#if 0
/* 获取片选引脚 */
icm20608dev.nd = of_get_parent(spi->dev.of_node);
icm20608dev.cs_gpio = of_get_named_gpio(icm20608dev.nd, "cs-gpio", 0);
if(icm20608dev.cs_gpio < 0) {
printk("can't get cs-gpio\r\n");
goto fail_gpio;
}
ret = gpio_request(icm20608dev.cs_gpio, "cs");
if (ret < 0)
{
printk("cs_gpio request failed!\r\n");
}
ret = gpio_direction_output(icm20608dev.cs_gpio, 1); /* 默认高电平 */
#endif
/* 初始化spi_device */
spi->mode = SPI_MODE_0;
spi_setup(spi);
/* 设置icm20608dev的私有数据 */
icm20608dev.private_data = spi;
/* 初始化icm20608 */
icm20608_reginit(&icm20608dev);
return 0;
fail_gpio:
fail_device:
class_destroy(icm20608dev.class);
fail_class:
cdev_del(&icm20608dev.cdev);
fail_cdev:
unregister_chrdev_region(icm20608dev.devid, ICM20608_CNT);
fail_devid:
return ret;
}
static int icm20608_remove(struct spi_device *spi)
{
int ret = 0;
/* 1,删除字符设备 */
cdev_del(&icm20608dev.cdev);
/* 2,注销设备号 */
unregister_chrdev_region(icm20608dev.devid, ICM20608_CNT);
/* 3,摧毁设备 */
device_destroy(icm20608dev.class, icm20608dev.devid);
/* 4,摧毁类 */
class_destroy(icm20608dev.class);
/* 5、释放片选 */
gpio_free(icm20608dev.cs_gpio);
return ret;
}
/* 传统匹配 */
struct spi_device_id icm20608_id[] = {
{"alientek,icm20608", 0},
{}
};
/* 设备树匹配 */
static const struct of_device_id icm20608_of_match[] = {
{ .compatible = "alientek,icm20608"},
{ }
};
/* spi_driver */
struct spi_driver icm20608_driver = {
.probe = icm20608_probe,
.remove = icm20608_remove,
.driver = {
.name = "icm20608",
.owner = THIS_MODULE,
.of_match_table = icm20608_of_match,
},
.id_table = icm20608_id,
};
/* 驱动入口函数 */
static int __init icm20608_init(void)
{
int ret = 0;
ret = spi_register_driver(&icm20608_driver);
return ret;
}
/* 驱动出口函数 */
static void __exit icm20608_exit(void)
{
spi_unregister_driver(&icm20608_driver);
}
module_init(icm20608_init);
module_exit(icm20608_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("zuozhongkai");
===============================================
icm20608_temp.c
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/fs.h>
#include <linux/slab.h>
#include <linux/uaccess.h>
#include <linux/io.h>
#include <linux/cdev.h>
#include <linux/device.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/gpio.h>
#include <linux/of_gpio.h>
#include <linux/string.h>
#include <linux/irq.h>
#include <asm/mach/map.h>
#include <asm/uaccess.h>
#include <asm/io.h>
#include <linux/interrupt.h>
#include <linux/input.h>
#include <linux/spi/spi.h>
#include <linux/delay.h>
#define ICM20608_CNT 1
#define ICM20608_NAME "icm20608"
/* 设备结构体 */
struct icm20608_dev {
int major;
int minor;
dev_t devid;
struct cdev cdev;
struct class *class;
struct device *device;
void *private_data;
};
static struct icm20608_dev icm20608dev;
static int icm20608_open(struct inode *inode, struct file *filp)
{
}
ssize_t icm20608_read(struct file *filp, char __user *buf, size_t cnt, loff_t *off)
{
}
static int icm20608_release(struct inode *inode, struct file *filp)
{
}
static const struct file_operations icm20608_fops = {
.owner = THIS_MODULE,
.open = icm20608_open,
.read = icm20608_read,
.release= icm20608_release,
};
static int icm20608_probe(struct spi_device *spi)
{
int ret = 0;
printk("icm20608_probe\r\n");
/* 搭建字符设备驱动框架,在/dev/ */
/* 2,注册字符设备 */
icm20608dev.major = 0; /* 由系统分配主设备号 */
if(icm20608dev.major){ /* 给定主设备号 */
icm20608dev.devid = MKDEV(icm20608dev.major, 0);
ret = register_chrdev_region(icm20608dev.devid, ICM20608_CNT, ICM20608_NAME);
} else { /* 没有给定主设备号 */
ret = alloc_chrdev_region(&icm20608dev.devid, 0, ICM20608_CNT, ICM20608_NAME);
icm20608dev.major = MAJOR(icm20608dev.devid);
icm20608dev.minor = MINOR(icm20608dev.devid);
}
if(ret < 0) {
printk("icm20608 chrdev_region err!\r\n");
goto fail_devid;
}
printk("icm20608 major=%d, minor=%d\r\n", icm20608dev.major, icm20608dev.minor);
/* 3,注册字符设备 */
icm20608dev.cdev.owner = THIS_MODULE;
cdev_init(&icm20608dev.cdev, &icm20608_fops);
ret = cdev_add(&icm20608dev.cdev, icm20608dev.devid, ICM20608_CNT);
if(ret < 0) {
goto fail_cdev;
}
/* 4,自动创建设备节点 */
icm20608dev.class = class_create(THIS_MODULE, ICM20608_NAME);
if (IS_ERR(icm20608dev.class)) {
ret = PTR_ERR(icm20608dev.class);
goto fail_class;
}
icm20608dev.device = device_create(icm20608dev.class, NULL,
icm20608dev.devid, NULL, ICM20608_NAME);
if (IS_ERR(icm20608dev.device)) {
ret = PTR_ERR(icm20608dev.device);
goto fail_device;
}
/* 设置icm20608dev的私有数据 */
icm20608dev.private_data = spi;
return 0;
fail_device:
class_destroy(icm20608dev.class);
fail_class:
cdev_del(&icm20608dev.cdev);
fail_cdev:
unregister_chrdev_region(icm20608dev.devid, ICM20608_CNT);
fail_devid:
return ret;
}
static int icm20608_remove(struct spi_device *spi)
{
int ret = 0;
/* 1,删除字符设备 */
cdev_del(&icm20608dev.cdev);
/* 2,注销设备号 */
unregister_chrdev_region(icm20608dev.devid, ICM20608_CNT);
/* 3,摧毁设备 */
device_destroy(icm20608dev.class, icm20608dev.devid);
/* 4,摧毁类 */
class_destroy(icm20608dev.class);
return ret;
}
/* 传统匹配 */
struct spi_device_id icm20608_id[] = {
{"alientek,icm20608", 0},
{}
};
/* 设备树匹配 */
static const struct of_device_id icm20608_of_match[] = {
{ .compatible = "alientek,icm20608"},
{ }
};
/* spi_driver */
struct spi_driver icm20608_driver = {
.probe = icm20608_probe,
.remove = icm20608_remove,
.driver = {
.name = "icm20608",
.owner = THIS_MODULE,
.of_match_table = icm20608_of_match,
},
.id_table = icm20608_id,
};
/* 驱动入口函数 */
static int __init icm20608_init(void)
{
int ret = 0;
ret = spi_register_driver(&icm20608_driver);
return ret;
}
/* 驱动出口函数 */
static void __exit icm20608_exit(void)
{
spi_unregister_driver(&icm20608_driver);
}
module_init(icm20608_init);
module_exit(icm20608_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("zuozhongkai");
==========================================
icm20608APP.c
#include "stdio.h"
#include "unistd.h"
#include "sys/types.h"
#include "sys/stat.h"
#include "sys/ioctl.h"
#include "fcntl.h"
#include "stdlib.h"
#include "string.h"
#include <poll.h>
#include <sys/select.h>
#include <sys/time.h>
#include <signal.h>
#include <fcntl.h>
/*
* @description : main主程序
* @param - argc : argv数组元素个数
* @param - argv : 具体参数
* @return : 0 成功;其他 失败
*/
int main(int argc, char *argv[])
{
int fd;
char *filename;
signed int databuf[7];
unsigned char data[14];
signed int gyro_x_adc, gyro_y_adc, gyro_z_adc;
signed int accel_x_adc, accel_y_adc, accel_z_adc;
signed int temp_adc;
float gyro_x_act, gyro_y_act, gyro_z_act;
float accel_x_act, accel_y_act, accel_z_act;
float temp_act;
int ret = 0;
if (argc != 2) {
printf("Error Usage!\r\n");
return -1;
}
filename = argv[1];
fd = open(filename, O_RDWR);
if(fd < 0) {
printf("can't open file %s\r\n", filename);
return -1;
}
while (1) {
ret = read(fd, databuf, sizeof(databuf));
if(ret == 0) { /* 数据读取成功 */
gyro_x_adc = databuf[0];
gyro_y_adc = databuf[1];
gyro_z_adc = databuf[2];
accel_x_adc = databuf[3];
accel_y_adc = databuf[4];
accel_z_adc = databuf[5];
temp_adc = databuf[6];
/* 计算实际值 */
gyro_x_act = (float)(gyro_x_adc) / 16.4;
gyro_y_act = (float)(gyro_y_adc) / 16.4;
gyro_z_act = (float)(gyro_z_adc) / 16.4;
accel_x_act = (float)(accel_x_adc) / 2048;
accel_y_act = (float)(accel_y_adc) / 2048;
accel_z_act = (float)(accel_z_adc) / 2048;
temp_act = ((float)(temp_adc) - 25 ) / 326.8 + 25;
printf("\r\n原始值:\r\n");
printf("gx = %d, gy = %d, gz = %d\r\n", gyro_x_adc, gyro_y_adc, gyro_z_adc);
printf("ax = %d, ay = %d, az = %d\r\n", accel_x_adc, accel_y_adc, accel_z_adc);
printf("temp = %d\r\n", temp_adc);
printf("实际值:");
printf("act gx = %.2f°/S, act gy = %.2f°/S, act gz = %.2f°/S\r\n", gyro_x_act, gyro_y_act, gyro_z_act);
printf("act ax = %.2fg, act ay = %.2fg, act az = %.2fg\r\n", accel_x_act, accel_y_act, accel_z_act);
printf("act temp = %.2f°C\r\n", temp_act);
}
usleep(100000); /*100ms */
}
close(fd); /* 关闭文件 */
return 0;
}
=============================================
icm20608reg.h
#ifndef __BSP_IMC20608_H
#define __BSP_IMC20608_H
/* ID值 */
#define ICM20608G_ID (0XAF)
#define ICM20608D_ID (0XAE)
/* 定义寄存器 */
/* ICM20608寄存器
*复位后所有寄存器地址都为0,除了
*Register 107(0X6B) Power Management 1 = 0x40
*Register 117(0X75) WHO_AM_I = 0xAF或0xAE
*/
/* 陀螺仪和加速度自测(出产时设置,用于与用户的自检输出值比较) */
#define ICM20_SELF_TEST_X_GYRO 0x00
#define ICM20_SELF_TEST_Y_GYRO 0x01
#define ICM20_SELF_TEST_Z_GYRO 0x02
#define ICM20_SELF_TEST_X_ACCEL 0x0D
#define ICM20_SELF_TEST_Y_ACCEL 0x0E
#define ICM20_SELF_TEST_Z_ACCEL 0x0F
/* 陀螺仪静态偏移 */
#define ICM20_XG_OFFS_USRH 0x13
#define ICM20_XG_OFFS_USRL 0x14
#define ICM20_YG_OFFS_USRH 0x15
#define ICM20_YG_OFFS_USRL 0x16
#define ICM20_ZG_OFFS_USRH 0x17
#define ICM20_ZG_OFFS_USRL 0x18
#define ICM20_SMPLRT_DIV 0x19
#define ICM20_CONFIG 0x1A
#define ICM20_GYRO_CONFIG 0x1B
#define ICM20_ACCEL_CONFIG 0x1C
#define ICM20_ACCEL_CONFIG2 0x1D
#define ICM20_LP_MODE_CFG 0x1E
#define ICM20_ACCEL_WOM_THR 0x1F
#define ICM20_FIFO_EN 0x23
#define ICM20_FSYNC_INT 0x36
#define ICM20_INT_PIN_CFG 0x37
#define ICM20_INT_ENABLE 0x38
#define ICM20_INT_STATUS 0x3A
/* 加速度输出 */
#define ICM20_ACCEL_XOUT_H 0x3B
#define ICM20_ACCEL_XOUT_L 0x3C
#define ICM20_ACCEL_YOUT_H 0x3D
#define ICM20_ACCEL_YOUT_L 0x3E
#define ICM20_ACCEL_ZOUT_H 0x3F
#define ICM20_ACCEL_ZOUT_L 0x40
/* 温度输出 */
#define ICM20_TEMP_OUT_H 0x41
#define ICM20_TEMP_OUT_L 0x42
/* 陀螺仪输出 */
#define ICM20_GYRO_XOUT_H 0x43
#define ICM20_GYRO_XOUT_L 0x44
#define ICM20_GYRO_YOUT_H 0x45
#define ICM20_GYRO_YOUT_L 0x46
#define ICM20_GYRO_ZOUT_H 0x47
#define ICM20_GYRO_ZOUT_L 0x48
#define ICM20_SIGNAL_PATH_RESET 0x68
#define ICM20_ACCEL_INTEL_CTRL 0x69
#define ICM20_USER_CTRL 0x6A
#define ICM20_PWR_MGMT_1 0x6B
#define ICM20_PWR_MGMT_2 0x6C
#define ICM20_FIFO_COUNTH 0x72
#define ICM20_FIFO_COUNTL 0x73
#define ICM20_FIFO_R_W 0x74
#define ICM20_WHO_AM_I 0x75
/* 加速度静态偏移 */
#define ICM20_XA_OFFSET_H 0x77
#define ICM20_XA_OFFSET_L 0x78
#define ICM20_YA_OFFSET_H 0x7A
#define ICM20_YA_OFFSET_L 0x7B
#define ICM20_ZA_OFFSET_H 0x7D
#define ICM20_ZA_OFFSET_L 0x7E
#endif
更多推荐
所有评论(0)