一.SPI 子系统结构

SPI 子系统中包含有 SPI控制器SPI设备两类硬件。内核对此抽象出了三个数据结构:

spi_master:用来表示一个SPI控制器;spi_device:用来表示一个SPI设备;spi_driver:与SPI设备对应的SPI驱动。

======================================

spi_master结构中最重要的成员是transfer函数指针,由它实现SPI控制器的数据传输功能。

struct spi_master {
	struct device	dev;
	struct list_head list;
    u32 slave;
	s16			bus_num;  //第几条总线
	u16			num_chipselect; //支持的片选引脚个数
	u16			dma_alignment;
	u16			mode_bits;   //SPI控制器支持的工作模式
	u32			bits_per_word_mask; //一次传输几位
#define SPI_BPW_MASK(bits) BIT((bits) - 1)
#define SPI_BIT_MASK(bits) (((bits) == 32) ? ~0U : (BIT(bits) - 1))
#define SPI_BPW_RANGE_MASK(min, max) (SPI_BIT_MASK(max) - SPI_BIT_MASK(min - 1))

	/* 最大/最小传输速率 */
	u32			min_speed_hz;
	u32			max_speed_hz;

	/* other constraints relevant to this driver */
	u16			flags;
#define SPI_MASTER_HALF_DUPLEX	BIT(0)		/* can't do full duplex */
#define SPI_MASTER_NO_RX	BIT(1)		/* can't do buffer read */
#define SPI_MASTER_NO_TX	BIT(2)		/* can't do buffer write */
#define SPI_MASTER_MUST_RX      BIT(3)		/* requires rx */
#define SPI_MASTER_MUST_TX      BIT(4)		/* requires tx */

	/* lock and mutex for SPI bus locking */
	spinlock_t		bus_lock_spinlock;
	struct mutex		bus_lock_mutex;

	/* flag indicating that the SPI bus is locked for exclusive use */
	bool			bus_lock_flag;
	/*设置spi总线工作模式,频率等*/
	int			(*setup)(struct spi_device *spi);
	/*spi 传输方法*/
	int			(*transfer)(struct spi_device *spi,
						struct spi_message *mesg);

	void			(*cleanup)(struct spi_device *spi);

	bool			(*can_dma)(struct spi_master *master,
					   struct spi_device *spi,
					   struct spi_transfer *xfer);

	bool				queued;
	struct kthread_worker		kworker;
	struct task_struct		*kworker_task;
	struct kthread_work		pump_messages;
	spinlock_t			queue_lock;
	struct list_head		queue;
	struct spi_message		*cur_msg;  
	bool				idling;  //空闲
	bool				busy;    //忙
	bool				running; //运行中
	bool				rt;
	bool				auto_runtime_pm;
	bool                            cur_msg_prepared;
	bool				cur_msg_mapped;
	struct completion               xfer_completion;
	size_t				max_dma_len;

	int (*prepare_transfer_hardware)(struct spi_master *master);
	int (*transfer_one_message)(struct spi_master *master,
				    struct spi_message *mesg);
	int (*unprepare_transfer_hardware)(struct spi_master *master);
	int (*prepare_message)(struct spi_master *master,
			       struct spi_message *message);
	int (*unprepare_message)(struct spi_master *master,
				 struct spi_message *message);

	void (*set_cs)(struct spi_device *spi, bool enable);
	int (*transfer_one)(struct spi_master *master, struct spi_device *spi,
			    struct spi_transfer *transfer);
	void (*handle_err)(struct spi_master *master,
			   struct spi_message *message);

	/* gpio chip select */
	int			*cs_gpios;

	/* statistics */
	struct spi_statistics	statistics;

	/* DMA channels for use with core dmaengine helpers */
	struct dma_chan		*dma_tx;
	struct dma_chan		*dma_rx;

	/* dummy data for full duplex devices */
	void			*dummy_rx;
	void			*dummy_tx;
};

spi_device结构体里面记录有设备的片选引脚、频率、挂在哪个SPI控制器下面等信息。

struct spi_device {
	struct device		dev;
	struct spi_master	*master; //设备挂在的对应控制器
	u32			max_speed_hz;   //该设备能支持的SPI时钟最大值
	u8			chip_select;    //是这个spi_master下的第几个设备
	u8			bits_per_word; //每次传输的位数,bits_per_word是可以大于32的,也就是每次SPI传输可能会发送多于32位的数据,这适用于DMA突发传输
	u16			mode;  //工作模式
#define	SPI_CPHA	0x01			/* 在第1个周期采样,在第2个周期采样? */
#define	SPI_CPOL	0x02			/* 平时时钟极性 */
#define	SPI_MODE_0	(0|0)			/* (original MicroWire) */
#define	SPI_MODE_1	(0|SPI_CPHA)
#define	SPI_MODE_2	(SPI_CPOL|0)
#define	SPI_MODE_3	(SPI_CPOL|SPI_CPHA)
#define	SPI_CS_HIGH	0x04			/* 一般来说片选引脚时低电平有效,SPI_CS_HIGH表示高电平有效 */
#define	SPI_LSB_FIRST	0x08	    /* 一般来说先传输MSB(最高位),SPI_LSB_FIRST表示先传LSB(最低位),很多SPI控制器并不支持SPI_LSB_FIRST */
#define	SPI_3WIRE	0x10			/* SO、SI共用一条线 */
#define	SPI_LOOP	0x20			/* 回环模式,就是SO、SI连接在一起 */
#define	SPI_NO_CS	0x40			/* 只有一个SPI设备,没有片选信号,也不需要片选信号 */
#define	SPI_READY	0x80			/* SPI从设备可以拉低信号,表示暂停、表示未就绪 */
#define	SPI_TX_DUAL	0x100			/* 发送数据时有2条信号线 */
#define	SPI_TX_QUAD	0x200			/* 发送数据时有4条信号线 */
#define	SPI_RX_DUAL	0x400			/* 接收数据时有2条信号线 */
#define	SPI_RX_QUAD	0x800			/* 接收数据时有4条信号线 */
#define SPI_SLAVE_MODE 0x1000       /* enabled spi slave mode */
	int			irq;
	void			*controller_state;
	void			*controller_data;
	char			modalias[SPI_NAME_SIZE];
	int			cs_gpio;	//这是可选项,也可以把spi_device的片选引脚记录在这里

	/* the statistics */
	struct spi_statistics	statistics;
};

spi_driver 结构体是”SPI总线设备驱动模型”中的一部分。

struct spi_driver {
	const struct spi_device_id *id_table;
	int			(*probe)(struct spi_device *spi);
	int			(*remove)(struct spi_device *spi);
	void			(*shutdown)(struct spi_device *spi);
	struct device_driver	driver;
};

SPI 子系统中包含有 SPI控制器SPI设备两类硬件。对应就有SPI控制器驱动和SPI设备驱动SPI控制器驱动提供SPI的传输能力,SPI设备驱动提供对SPI设备的访问能力。

=============================================

二.SPI控制器驱动

SPI控制器驱动基于"平台总线设备驱动"模型实现,在设备树里描述SPI控制器的硬件信息,在设备树子节点里描述挂在下面的SPI设备的信息,platform_devide使用设备树描述生成,platform_driver与platform_devide二者匹配成功后,调用platform_driver中的probe函数,probe函数会分配、设置、注册一个spi_master结构体,并且解析设备树的spi子节点,生成spi_device。

SPI设备驱动

跟"平台总线设备驱动模型"类似,Linux中也有一个"SPI总线设备驱动模型",SPI设备驱动基于"SPI总线设备驱动"模型实现。

spi_device来自设备树(由SPI控制器驱动解析完成),用来描述SPI设备,比如它的片选引脚、频率,可以来自设备树:比如由SPI控制器驱动程序解析设备树后创建、注册spi_device;可以来自C文件:比如使用spi_register_board_info创建、注册spi_device

spi_device:每个spi_device下都有一个spi_master。每个SPI设备,肯定挂载到了一个SPI控制器,比如ICM20608挂载到了6ULL的ECSPI3接口上。

&ecspi3 {
    fsl,spi-num-chipselects = <1>;
	cs-gpios = <&gpio1 20 GPIO_ACTIVE_LOW>; 
	pinctrl-names = "default";
	pinctrl-0 = <&pinctrl_ecspi3>;
	status = "okay";
 
	spidev: icm20608@0 {
		compatible = "my,icm20608";
		spi-max-frequency = <8000000>;
		reg = <0>;
	};	
};

“fsl,spi-num-chipselects”属性为 1,表示只有一个设备

“cs-gpios”属性,也就是片选信号,SPI 主机驱动就会控制片选引脚

“pinctrl-names”属性,也就是 SPI 设备所使用的 IO 名字

“pinctrl-0”属性,也就是所使用的 IO 对应的 pinctrl 节点

“status”属性为“okay”

每一个 SPI 设备都采用一个子节点来描述其设备信息,icm20608 连接在 ECSPI3 的第 0 个通道上,因此@后面为 0

SPI 设备的 compatible 属性值,用于匹配设备驱动

“spi-max-frequency”属性设置 SPI 控制器的最高频率,这个要根据使用的SPI 设备来设置

icm20608 连接在通道 0 上,因此 reg 为 0。

-----------------------------------------------------------------------------

在 imx6ull-alientek-emmc.dts 文件中添加 ICM20608 所使用的 IO 信息,在 iomuxc 节点
中添加一个新的子节点来描述 ICM20608 所使用的 SPI 引脚

pinctrl_ecspi3: icm20608 {
            fsl,pins = < 
                MX6UL_PAD_UART2_TX_DATA__GPIO1_IO20        0x10b0    /* CS */
                MX6UL_PAD_UART2_RX_DATA__ECSPI3_SCLK    0x10b1    /* SCLK */
                MX6UL_PAD_UART2_RTS_B__ECSPI3_MISO        0x10b1    /* MISO */
                MX6UL_PAD_UART2_CTS_B__ECSPI3_MOSI        0x10b1    /* MOSI */
            >;
        };

-----------------------------------------------------------------------------

spi_driver使用 .c 文件实现,结构体里面有id_table表示能支持哪些SPI设备,驱动开发人员要实现probe函数。

申请或者 定义一个spi_driver,然后初始化spi_driver中的各个成员变量,当SPI设备和驱动匹配以后,spi_driver下的probe函数就会执行!spi_driver初始化成功以后需要向内核注册,函数为:spi_register_driver,当注销驱动的时候需要spi_unregister_driver。

三.SPI数据传输接口

用到两个重要的结构体:spi_transfer和spi_message

struct spi_message {
	struct list_head	transfers; //链表,用来管理多个spi_transfer
	struct spi_device	*spi;
	unsigned		is_dma_mapped:1;

	void			(*complete)(void *context);
	void			*context;
	unsigned		frame_length;
	unsigned		actual_length;
	int			status;
	struct list_head	queue;
	void			*state;
	struct list_head        resources;
};

spi_transfer用来构建收发数据内容。

struct spi_transfer {

	const void	*tx_buf;  //发送buf
	void		*rx_buf;  //结构buf
	unsigned	len;     //长度

	dma_addr_t	tx_dma;
	dma_addr_t	rx_dma;
	struct sg_table tx_sg;
	struct sg_table rx_sg;

	unsigned	cs_change:1;
	unsigned	tx_nbits:3;
	unsigned	rx_nbits:3;
#define	SPI_NBITS_SINGLE	0x01 /* 1bit transfer */
#define	SPI_NBITS_DUAL		0x02 /* 2bits transfer */
#define	SPI_NBITS_QUAD		0x04 /* 4bits transfer */
	u8		bits_per_word;
	u16		delay_usecs;
	u32		speed_hz;

	struct list_head transfer_list;
};

构建spi_transfer,然后将其打包到spi_message里面,需要使用spi_message_init初始化spi_message,然后在使用spi_message_add_tail将spi_transfer添加到spi_message里面,最终使用spi_sync和spi_async来发送。

======================================================

代码实现

icm20608.c

#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/fs.h>
#include <linux/slab.h>
#include <linux/uaccess.h>
#include <linux/io.h>
#include <linux/cdev.h>
#include <linux/device.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/gpio.h>
#include <linux/of_gpio.h>
#include <linux/string.h>
#include <linux/irq.h>
#include <asm/mach/map.h>
#include <asm/uaccess.h>
#include <asm/io.h>
#include <linux/interrupt.h>
#include <linux/input.h>
#include <linux/spi/spi.h>
#include <linux/delay.h>
#include "icm20608reg.h"

#define ICM20608_CNT     1
#define ICM20608_NAME    "icm20608"

/* 设备结构体 */
struct icm20608_dev {
    int major; 
    int minor; 
    dev_t devid;
    struct cdev cdev;
    struct class *class;
    struct device *device;
    void *private_data;
    int cs_gpio; 
    struct device_node *nd;   
    signed int gyro_x_adc;		/* 陀螺仪X轴原始值 	 */
	signed int gyro_y_adc;		/* 陀螺仪Y轴原始值		*/
	signed int gyro_z_adc;		/* 陀螺仪Z轴原始值 		*/
	signed int accel_x_adc;		/* 加速度计X轴原始值 	*/
	signed int accel_y_adc;		/* 加速度计Y轴原始值	*/
	signed int accel_z_adc;		/* 加速度计Z轴原始值 	*/
	signed int temp_adc;		/* 温度原始值 			*/    
};

static struct icm20608_dev icm20608dev;

#if 0
/* SPI读寄存器 */
static int icm20608_read_regs(struct icm20608_dev *dev, u8 reg, void *buf, int len)
{
    int ret = 0;
    unsigned char txdata[len];
    struct spi_message m;
    struct spi_transfer *t;
    struct spi_device *spi = (struct spi_device *)dev->private_data;

    /* 片选拉低 */
    gpio_set_value(dev->cs_gpio, 0);

    /* 构建spi_transfer */
    t = kzalloc(sizeof(struct spi_transfer), GFP_KERNEL);

    /* 第一步:发送要读取的寄存器地址 */
    txdata[0] = reg | 0x80; 
    t->tx_buf = txdata; 
    t->len = 1;

    spi_message_init(&m);  
    spi_message_add_tail(t, &m);
    ret = spi_sync(spi, &m);

    /* 第二步,读取数据 */
    txdata[0] = 0xff;       /* 无效的 */
    t->rx_buf = buf;
    t->len = len;

    spi_message_init(&m);  
    spi_message_add_tail(t, &m);
    ret = spi_sync(spi, &m);

    kfree(t);
    gpio_set_value(dev->cs_gpio, 1); /* 片选拉高 */
}

/* SPI写寄存器 */
static int icm20608_write_regs(struct icm20608_dev *dev, u8 reg, u8 *buf, int len)
{
    int ret = 0;
    unsigned char txdata[len];
    struct spi_message m;
    struct spi_transfer *t;
    struct spi_device *spi = (struct spi_device *)dev->private_data;

    /* 片选拉低 */
    gpio_set_value(dev->cs_gpio, 0);

    /* 构建spi_transfer */
    t = kzalloc(sizeof(struct spi_transfer), GFP_KERNEL);

    /* 第一步:发送要写的寄存器地址 */
    txdata[0] = reg & ~0x80; 
    t->tx_buf = txdata; 
    t->len = 1;

    spi_message_init(&m);  
    spi_message_add_tail(t, &m);
    ret = spi_sync(spi, &m);

    /* 第二步,读取数据 */
    t->tx_buf = buf;
    t->len = len;

    spi_message_init(&m);  
    spi_message_add_tail(t, &m);
    ret = spi_sync(spi, &m);

    kfree(t);
    gpio_set_value(dev->cs_gpio, 1); /* 片选拉高 */
    return ret;
}
#endif

/* SPI读寄存器 */
static int icm20608_read_regs(struct icm20608_dev *dev, u8 reg, void *buf, int len)
{
    u8 data = 0;

    struct spi_device *spi = (struct spi_device *)dev->private_data;

    /* 片选拉低 */
    //gpio_set_value(dev->cs_gpio, 0);

    data = reg | 0x80;

    spi_write_then_read(spi, &data, 1, buf, len);

    //spi_write(spi, &data, 1); /* 发送要读取的寄存器地址 */
    //spi_read(spi, buf, len);/* 读取数据 */

    //gpio_set_value(dev->cs_gpio, 1); /* 片选拉高 */
    return 0;
}

/* SPI写寄存器 */
static int icm20608_write_regs(struct icm20608_dev *dev, u8 reg, u8 *buf, int len)
{
    u8 data = 0;
    u8 *txdata;
    struct spi_device *spi = (struct spi_device *)dev->private_data;

    /* 片选拉低 */
    //gpio_set_value(dev->cs_gpio, 0);

    txdata = kzalloc(len + 1, GFP_KERNEL);

    txdata[0] = reg & ~0x80;        /* 要写的寄存器地址 */
    memcpy(&txdata[1], buf, len);   /* 要发送的数据拷贝到txdata里面 */
    spi_write(spi, txdata, len + 1); /* 发送要写的寄存器地址 */

    //spi_write(spi, &data, 1); /* 发送要写的寄存器地址 */
    //spi_write(spi, buf, len); /* 发送要写的寄存器地址 */

    kfree(txdata);
    //gpio_set_value(dev->cs_gpio, 1); /* 片选拉高 */
    return 0;
}


/* ICM20608读取单个寄存器 */
static unsigned char icm20608_read_onereg(struct icm20608_dev *dev, u8 reg)
{
    u8 data = 0;
    icm20608_read_regs(dev, reg, &data, 1);
    return data;
}

/* ICM20608写一个寄存器 */
static void icm20608_write_onereg(struct icm20608_dev *dev, u8 reg, u8 value)
{
    u8 buf = value;
    icm20608_write_regs(dev, reg, &buf, 1);
}

/*
 * @description	: 读取ICM20608的数据,读取原始数据,包括三轴陀螺仪、
 * 				: 三轴加速度计和内部温度。
 * @param - dev	: ICM20608设备
 * @return 		: 无。
 */
void icm20608_readdata(struct icm20608_dev *dev)
{
	unsigned char data[14];
	icm20608_read_regs(dev, ICM20_ACCEL_XOUT_H, data, 14);

	dev->accel_x_adc = (signed short)((data[0] << 8) | data[1]); 
	dev->accel_y_adc = (signed short)((data[2] << 8) | data[3]); 
	dev->accel_z_adc = (signed short)((data[4] << 8) | data[5]); 
	dev->temp_adc    = (signed short)((data[6] << 8) | data[7]); 
	dev->gyro_x_adc  = (signed short)((data[8] << 8) | data[9]); 
	dev->gyro_y_adc  = (signed short)((data[10] << 8) | data[11]);
	dev->gyro_z_adc  = (signed short)((data[12] << 8) | data[13]);
}

/* ICM20608初始化 */
void icm20608_reginit(struct icm20608_dev *dev)
{
    u8 value  = 0;

    icm20608_write_onereg(dev, ICM20_PWR_MGMT_1, 0x80); /* 复位,复位后为0x40,睡眠模式          */  
    mdelay(50);
    icm20608_write_onereg(dev, ICM20_PWR_MGMT_1, 0x01);   /* 关闭睡眠,自动选择时钟                   */
    mdelay(50);
 
    value = icm20608_read_onereg(dev, ICM20_WHO_AM_I);
    printk("ICM20608 ID = %#X\r\n", value);

    value = icm20608_read_onereg(dev, ICM20_PWR_MGMT_1);
    printk("ICM20_PWR_MGMT_1 = %#X\r\n", value);

    icm20608_write_onereg(&icm20608dev, ICM20_SMPLRT_DIV, 0x00); 	/* 输出速率是内部采样率					*/
	icm20608_write_onereg(&icm20608dev, ICM20_GYRO_CONFIG, 0x18); 	/* 陀螺仪±2000dps量程 				*/
	icm20608_write_onereg(&icm20608dev, ICM20_ACCEL_CONFIG, 0x18); 	/* 加速度计±16G量程 					*/
	icm20608_write_onereg(&icm20608dev, ICM20_CONFIG, 0x04); 		/* 陀螺仪低通滤波BW=20Hz 				*/
	icm20608_write_onereg(&icm20608dev, ICM20_ACCEL_CONFIG2, 0x04); /* 加速度计低通滤波BW=21.2Hz 			*/
	icm20608_write_onereg(&icm20608dev, ICM20_PWR_MGMT_2, 0x00); 	/* 打开加速度计和陀螺仪所有轴 				*/
	icm20608_write_onereg(&icm20608dev, ICM20_LP_MODE_CFG, 0x00); 	/* 关闭低功耗 						*/
	icm20608_write_onereg(&icm20608dev, ICM20_FIFO_EN, 0x00);		/* 关闭FIFO	 */
}

static int icm20608_open(struct inode *inode, struct file *filp)
{
	filp->private_data = &icm20608dev; /* 设置私有数据 */
	return 0;
}

ssize_t icm20608_read(struct file *filp, char __user *buf, size_t cnt, loff_t *off)
{
    signed int data[7];
	long err = 0;
	struct icm20608_dev *dev = (struct icm20608_dev *)filp->private_data;

	icm20608_readdata(dev);
	data[0] = dev->gyro_x_adc;
	data[1] = dev->gyro_y_adc;
	data[2] = dev->gyro_z_adc;
	data[3] = dev->accel_x_adc;
	data[4] = dev->accel_y_adc;
	data[5] = dev->accel_z_adc;
	data[6] = dev->temp_adc;
	err = copy_to_user(buf, data, sizeof(data));
    return 0;
}

static int icm20608_release(struct inode *inode, struct file *filp)
{
    return 0;
}

static const struct file_operations icm20608_fops = {
    .owner = THIS_MODULE,
	.open	= icm20608_open,
    .read   = icm20608_read,
	.release= icm20608_release,
};

static int icm20608_probe(struct spi_device *spi)
{
    int ret = 0;

    printk("icm20608_probe\r\n");

    /* 搭建字符设备驱动框架,在/dev/ */
    /* 2,注册字符设备 */
    icm20608dev.major = 0;   /* 由系统分配主设备号 */
    if(icm20608dev.major){    /* 给定主设备号 */
        icm20608dev.devid = MKDEV(icm20608dev.major, 0);
        ret = register_chrdev_region(icm20608dev.devid, ICM20608_CNT, ICM20608_NAME);
    } else {                /* 没有给定主设备号 */
        ret = alloc_chrdev_region(&icm20608dev.devid, 0, ICM20608_CNT, ICM20608_NAME);
        icm20608dev.major = MAJOR(icm20608dev.devid);
        icm20608dev.minor = MINOR(icm20608dev.devid);
    }
    if(ret < 0) {
        printk("icm20608 chrdev_region err!\r\n");
        goto fail_devid;
    }
    printk("icm20608 major=%d, minor=%d\r\n", icm20608dev.major, icm20608dev.minor);

    /* 3,注册字符设备 */
    icm20608dev.cdev.owner = THIS_MODULE;
    cdev_init(&icm20608dev.cdev, &icm20608_fops);
    ret = cdev_add(&icm20608dev.cdev, icm20608dev.devid, ICM20608_CNT);
    if(ret < 0) {
        goto fail_cdev;
    }

    /* 4,自动创建设备节点 */
    icm20608dev.class = class_create(THIS_MODULE, ICM20608_NAME);
	if (IS_ERR(icm20608dev.class)) {
        ret = PTR_ERR(icm20608dev.class);
		goto fail_class;
    }

    icm20608dev.device = device_create(icm20608dev.class, NULL,
			     icm20608dev.devid, NULL, ICM20608_NAME);
	if (IS_ERR(icm20608dev.device)) {
        ret = PTR_ERR(icm20608dev.device);
        goto fail_device;
    }

#if 0
    /* 获取片选引脚 */
    icm20608dev.nd = of_get_parent(spi->dev.of_node);
    icm20608dev.cs_gpio = of_get_named_gpio(icm20608dev.nd, "cs-gpio", 0);
    if(icm20608dev.cs_gpio < 0) {
        printk("can't get cs-gpio\r\n");
        goto fail_gpio;
    }

    ret = gpio_request(icm20608dev.cs_gpio, "cs");
    if (ret < 0)
    {
        printk("cs_gpio request failed!\r\n");
    }

    ret = gpio_direction_output(icm20608dev.cs_gpio, 1); /* 默认高电平 */
#endif

    /* 初始化spi_device */
    spi->mode = SPI_MODE_0;
    spi_setup(spi);

    /* 设置icm20608dev的私有数据 */
    icm20608dev.private_data = spi;   

    /* 初始化icm20608 */
    icm20608_reginit(&icm20608dev);

    return 0;

fail_gpio:
fail_device:
    class_destroy(icm20608dev.class);
fail_class:
    cdev_del(&icm20608dev.cdev);
fail_cdev:
    unregister_chrdev_region(icm20608dev.devid, ICM20608_CNT);
fail_devid:
	return ret; 
}

static int icm20608_remove(struct spi_device *spi)
{
    int ret = 0;

    /* 1,删除字符设备 */
    cdev_del(&icm20608dev.cdev);

    /* 2,注销设备号 */
    unregister_chrdev_region(icm20608dev.devid, ICM20608_CNT);

    /* 3,摧毁设备 */
    device_destroy(icm20608dev.class, icm20608dev.devid);
  
    /* 4,摧毁类 */
    class_destroy(icm20608dev.class);

    /* 5、释放片选 */
    gpio_free(icm20608dev.cs_gpio);
    return ret;
}

/* 传统匹配 */
struct spi_device_id icm20608_id[] = {
    {"alientek,icm20608", 0},
    {}

};

/* 设备树匹配 */
static const struct of_device_id icm20608_of_match[] = {
	{ .compatible = "alientek,icm20608"},
	{ }
};

/* spi_driver */
struct spi_driver icm20608_driver = {
    .probe		= icm20608_probe,
	.remove		= icm20608_remove,
	.driver = {
		.name	= "icm20608",
		.owner	= THIS_MODULE,
		.of_match_table = icm20608_of_match,
	},
    .id_table = icm20608_id,
};

/* 驱动入口函数 */
static int __init icm20608_init(void)
{
    int ret = 0;

    ret = spi_register_driver(&icm20608_driver);

    return ret;

}

/* 驱动出口函数 */
static void __exit icm20608_exit(void)
{
    spi_unregister_driver(&icm20608_driver);
}

module_init(icm20608_init);
module_exit(icm20608_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("zuozhongkai");

===============================================

icm20608_temp.c

#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/fs.h>
#include <linux/slab.h>
#include <linux/uaccess.h>
#include <linux/io.h>
#include <linux/cdev.h>
#include <linux/device.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/gpio.h>
#include <linux/of_gpio.h>
#include <linux/string.h>
#include <linux/irq.h>
#include <asm/mach/map.h>
#include <asm/uaccess.h>
#include <asm/io.h>
#include <linux/interrupt.h>
#include <linux/input.h>
#include <linux/spi/spi.h>
#include <linux/delay.h>

#define ICM20608_CNT     1
#define ICM20608_NAME    "icm20608"

/* 设备结构体 */
struct icm20608_dev {
    int major; 
    int minor; 
    dev_t devid;
    struct cdev cdev;
    struct class *class;
    struct device *device;
    void *private_data;
};

static struct icm20608_dev icm20608dev;

static int icm20608_open(struct inode *inode, struct file *filp)
{

}

ssize_t icm20608_read(struct file *filp, char __user *buf, size_t cnt, loff_t *off)
{

}

static int icm20608_release(struct inode *inode, struct file *filp)
{

}


static const struct file_operations icm20608_fops = {
    .owner = THIS_MODULE,
	.open	= icm20608_open,
    .read   = icm20608_read,
	.release= icm20608_release,
};

static int icm20608_probe(struct spi_device *spi)
{
    int ret = 0;

    printk("icm20608_probe\r\n");

    /* 搭建字符设备驱动框架,在/dev/ */
    /* 2,注册字符设备 */
    icm20608dev.major = 0;   /* 由系统分配主设备号 */
    if(icm20608dev.major){    /* 给定主设备号 */
        icm20608dev.devid = MKDEV(icm20608dev.major, 0);
        ret = register_chrdev_region(icm20608dev.devid, ICM20608_CNT, ICM20608_NAME);
    } else {                /* 没有给定主设备号 */
        ret = alloc_chrdev_region(&icm20608dev.devid, 0, ICM20608_CNT, ICM20608_NAME);
        icm20608dev.major = MAJOR(icm20608dev.devid);
        icm20608dev.minor = MINOR(icm20608dev.devid);
    }
    if(ret < 0) {
        printk("icm20608 chrdev_region err!\r\n");
        goto fail_devid;
    }
    printk("icm20608 major=%d, minor=%d\r\n", icm20608dev.major, icm20608dev.minor);

    /* 3,注册字符设备 */
    icm20608dev.cdev.owner = THIS_MODULE;
    cdev_init(&icm20608dev.cdev, &icm20608_fops);
    ret = cdev_add(&icm20608dev.cdev, icm20608dev.devid, ICM20608_CNT);
    if(ret < 0) {
        goto fail_cdev;
    }

    /* 4,自动创建设备节点 */
    icm20608dev.class = class_create(THIS_MODULE, ICM20608_NAME);
	if (IS_ERR(icm20608dev.class)) {
        ret = PTR_ERR(icm20608dev.class);
		goto fail_class;
    }

    icm20608dev.device = device_create(icm20608dev.class, NULL,
			     icm20608dev.devid, NULL, ICM20608_NAME);
	if (IS_ERR(icm20608dev.device)) {
        ret = PTR_ERR(icm20608dev.device);
        goto fail_device;
    }
		
    /* 设置icm20608dev的私有数据 */
    icm20608dev.private_data = spi;   


    return 0;

fail_device:
    class_destroy(icm20608dev.class);
fail_class:
    cdev_del(&icm20608dev.cdev);
fail_cdev:
    unregister_chrdev_region(icm20608dev.devid, ICM20608_CNT);
fail_devid:
	return ret; 
}

static int icm20608_remove(struct spi_device *spi)
{
    int ret = 0;

    /* 1,删除字符设备 */
    cdev_del(&icm20608dev.cdev);

    /* 2,注销设备号 */
    unregister_chrdev_region(icm20608dev.devid, ICM20608_CNT);

    /* 3,摧毁设备 */
    device_destroy(icm20608dev.class, icm20608dev.devid);
  
    /* 4,摧毁类 */
    class_destroy(icm20608dev.class);
    return ret;
}

/* 传统匹配 */
struct spi_device_id icm20608_id[] = {
    {"alientek,icm20608", 0},
    {}

};

/* 设备树匹配 */
static const struct of_device_id icm20608_of_match[] = {
	{ .compatible = "alientek,icm20608"},
	{ }
};

/* spi_driver */
struct spi_driver icm20608_driver = {
    .probe		= icm20608_probe,
	.remove		= icm20608_remove,
	.driver = {
		.name	= "icm20608",
		.owner	= THIS_MODULE,
		.of_match_table = icm20608_of_match,
	},
    .id_table = icm20608_id,
};

/* 驱动入口函数 */
static int __init icm20608_init(void)
{
    int ret = 0;

    ret = spi_register_driver(&icm20608_driver);

    return ret;

}

/* 驱动出口函数 */
static void __exit icm20608_exit(void)
{
    spi_unregister_driver(&icm20608_driver);
}

module_init(icm20608_init);
module_exit(icm20608_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("zuozhongkai");

==========================================

icm20608APP.c

#include "stdio.h"
#include "unistd.h"
#include "sys/types.h"
#include "sys/stat.h"
#include "sys/ioctl.h"
#include "fcntl.h"
#include "stdlib.h"
#include "string.h"
#include <poll.h>
#include <sys/select.h>
#include <sys/time.h>
#include <signal.h>
#include <fcntl.h>

/*
 * @description		: main主程序
 * @param - argc 	: argv数组元素个数
 * @param - argv 	: 具体参数
 * @return 			: 0 成功;其他 失败
 */
int main(int argc, char *argv[])
{
	int fd;
	char *filename;
	signed int databuf[7];
	unsigned char data[14];
	signed int gyro_x_adc, gyro_y_adc, gyro_z_adc;
	signed int accel_x_adc, accel_y_adc, accel_z_adc;
	signed int temp_adc;

	float gyro_x_act, gyro_y_act, gyro_z_act;
	float accel_x_act, accel_y_act, accel_z_act;
	float temp_act;

	int ret = 0;

	if (argc != 2) {
		printf("Error Usage!\r\n");
		return -1;
	}

	filename = argv[1];
	fd = open(filename, O_RDWR);
	if(fd < 0) {
		printf("can't open file %s\r\n", filename);
		return -1;
	}

	while (1) {
		ret = read(fd, databuf, sizeof(databuf));
		if(ret == 0) { 			/* 数据读取成功 */
			gyro_x_adc = databuf[0];
			gyro_y_adc = databuf[1];
			gyro_z_adc = databuf[2];
			accel_x_adc = databuf[3];
			accel_y_adc = databuf[4];
			accel_z_adc = databuf[5];
			temp_adc = databuf[6];

			/* 计算实际值 */
			gyro_x_act = (float)(gyro_x_adc)  / 16.4;
			gyro_y_act = (float)(gyro_y_adc)  / 16.4;
			gyro_z_act = (float)(gyro_z_adc)  / 16.4;
			accel_x_act = (float)(accel_x_adc) / 2048;
			accel_y_act = (float)(accel_y_adc) / 2048;
			accel_z_act = (float)(accel_z_adc) / 2048;
			temp_act = ((float)(temp_adc) - 25 ) / 326.8 + 25;


			printf("\r\n原始值:\r\n");
			printf("gx = %d, gy = %d, gz = %d\r\n", gyro_x_adc, gyro_y_adc, gyro_z_adc);
			printf("ax = %d, ay = %d, az = %d\r\n", accel_x_adc, accel_y_adc, accel_z_adc);
			printf("temp = %d\r\n", temp_adc);
			printf("实际值:");
			printf("act gx = %.2f°/S, act gy = %.2f°/S, act gz = %.2f°/S\r\n", gyro_x_act, gyro_y_act, gyro_z_act);
			printf("act ax = %.2fg, act ay = %.2fg, act az = %.2fg\r\n", accel_x_act, accel_y_act, accel_z_act);
			printf("act temp = %.2f°C\r\n", temp_act);
		}
		usleep(100000); /*100ms */
	}
	close(fd);	/* 关闭文件 */	
	return 0;
}

=============================================

icm20608reg.h

#ifndef __BSP_IMC20608_H
#define __BSP_IMC20608_H

/* ID值 */
#define ICM20608G_ID    (0XAF)
#define ICM20608D_ID    (0XAE)

/*  定义寄存器 */
/* ICM20608寄存器 
 *复位后所有寄存器地址都为0,除了
 *Register 107(0X6B) Power Management 1 	= 0x40
 *Register 117(0X75) WHO_AM_I 				= 0xAF或0xAE
 */
/* 陀螺仪和加速度自测(出产时设置,用于与用户的自检输出值比较) */
#define	ICM20_SELF_TEST_X_GYRO		0x00
#define	ICM20_SELF_TEST_Y_GYRO		0x01
#define	ICM20_SELF_TEST_Z_GYRO		0x02
#define	ICM20_SELF_TEST_X_ACCEL		0x0D
#define	ICM20_SELF_TEST_Y_ACCEL		0x0E
#define	ICM20_SELF_TEST_Z_ACCEL		0x0F

/* 陀螺仪静态偏移 */
#define	ICM20_XG_OFFS_USRH			0x13
#define	ICM20_XG_OFFS_USRL			0x14
#define	ICM20_YG_OFFS_USRH			0x15
#define	ICM20_YG_OFFS_USRL			0x16
#define	ICM20_ZG_OFFS_USRH			0x17
#define	ICM20_ZG_OFFS_USRL			0x18

#define	ICM20_SMPLRT_DIV			0x19
#define	ICM20_CONFIG				0x1A
#define	ICM20_GYRO_CONFIG			0x1B
#define	ICM20_ACCEL_CONFIG			0x1C
#define	ICM20_ACCEL_CONFIG2			0x1D
#define	ICM20_LP_MODE_CFG			0x1E
#define	ICM20_ACCEL_WOM_THR			0x1F
#define	ICM20_FIFO_EN				0x23
#define	ICM20_FSYNC_INT				0x36
#define	ICM20_INT_PIN_CFG			0x37
#define	ICM20_INT_ENABLE			0x38
#define	ICM20_INT_STATUS			0x3A

/* 加速度输出 */
#define	ICM20_ACCEL_XOUT_H			0x3B
#define	ICM20_ACCEL_XOUT_L			0x3C
#define	ICM20_ACCEL_YOUT_H			0x3D
#define	ICM20_ACCEL_YOUT_L			0x3E
#define	ICM20_ACCEL_ZOUT_H			0x3F
#define	ICM20_ACCEL_ZOUT_L			0x40

/* 温度输出 */
#define	ICM20_TEMP_OUT_H			0x41
#define	ICM20_TEMP_OUT_L			0x42

/* 陀螺仪输出 */
#define	ICM20_GYRO_XOUT_H			0x43
#define	ICM20_GYRO_XOUT_L			0x44
#define	ICM20_GYRO_YOUT_H			0x45
#define	ICM20_GYRO_YOUT_L			0x46
#define	ICM20_GYRO_ZOUT_H			0x47
#define	ICM20_GYRO_ZOUT_L			0x48

#define	ICM20_SIGNAL_PATH_RESET		0x68
#define	ICM20_ACCEL_INTEL_CTRL 		0x69
#define	ICM20_USER_CTRL				0x6A
#define	ICM20_PWR_MGMT_1			0x6B
#define	ICM20_PWR_MGMT_2			0x6C
#define	ICM20_FIFO_COUNTH			0x72
#define	ICM20_FIFO_COUNTL			0x73
#define	ICM20_FIFO_R_W				0x74
#define	ICM20_WHO_AM_I 				0x75

/* 加速度静态偏移 */
#define	ICM20_XA_OFFSET_H			0x77
#define	ICM20_XA_OFFSET_L			0x78
#define	ICM20_YA_OFFSET_H			0x7A
#define	ICM20_YA_OFFSET_L			0x7B
#define	ICM20_ZA_OFFSET_H			0x7D
#define	ICM20_ZA_OFFSET_L 			0x7E


#endif

Logo

有“AI”的1024 = 2048,欢迎大家加入2048 AI社区

更多推荐