前言

智能指针的重要性:

  1. 消除内存泄漏与野指针;
  2. 智能指针在异常发生时仍能保证资源释放,避免因抛出异常导致的内存泄漏;
  3. 智能指针是STL容器、多线程编程和资源管理的基石。
    智能指针的学习重点:
  4. 三类智能指针的适用场景;
  5. 循环引用与解决方案;
  6. shared_ptr底层实现。
  7. 理解各类智能指针的底层原理。

一、 智能指针的使用场景分析

下⾯程序中我们可以看到,new了以后,我们也delete了,但是因为抛异常导,后⾯的delete没有得到执⾏,所以就内存泄漏了,所以我们需要new以后捕获异常,捕获到异常后delete内存,再把异常抛出,但是因为new本⾝也可能抛异常,连续的两个new和下⾯的Divide都可能会抛异常,让我们处理起来很⿇烦。智能指针放到这样的场景⾥⾯就让问题简单多了。

double Divide(int a, int b)
{
	// 当b == 0时抛出异常
	if (b == 0)
	{
		throw "Divide by zero condition!";
	} 
	else
	{
		return (double)a / (double)b;
	}
} 
void Func()
{
	// 这⾥可以看到如果发⽣除0错误抛出异常,另外下⾯的array和array2没有得到释放。
	// 所以这⾥捕获异常后并不处理异常,异常还是交给外⾯处理,这⾥捕获了再重新抛出去。
	// 但是如果array2new的时候抛异常呢,就还需要套⼀层捕获释放逻辑,这⾥更好解决⽅案
	// 是智能指针,否则代码太戳了
	int* array1 = new int[10];
	int* array2 = new int[10]; // 抛异常呢
	try
	{
		int len, time;
		cin >> len >> time;
		cout << Divide(len, time) << endl;
	} 
	catch (...)
	{
		cout << "delete []" << array1 << endl;
		cout << "delete []" << array2 << endl;
		delete[] array1;
		delete[] array2;
		throw; // 异常重新抛出,捕获到什么抛出什么
	} 
// ...
	cout << "delete []" << array1 << endl;
	delete[] array1;
	cout << "delete []" << array2 << endl;
	delete[] array2;
}
int main()
{
	try
	{
		Func();
	} 
	catch (const char* errmsg)
	{
		cout << errmsg << endl;
	} 
	catch (const exception& e)
	{
		cout << e.what() << endl;
	} 
	catch (...)
	{
		cout << "未知异常" << endl;
	} 
	return 0;
}

二、 RAll 和智能指针的设计思路

• RAII是Resource Acquisition Is Initialization的缩写,他是⼀种管理资源的类的设计思想,本质是⼀种利⽤对象⽣命周期来管理获取到的动态资源,避免资源泄漏,这⾥的资源可以是内存、⽂件指针、⽹络连接、互斥锁等等。RAII在获取资源时把资源委托给⼀个对象,接着控制对资源的访问,资源在对象的⽣命周期内始终保持有效,最后在对象析构的时候释放资源,这样保障了资源的正常释放,避免资源泄漏问题。
• 智能指针类除了满⾜RAII的设计思路,还要⽅便资源的访问,所以智能指针类还会想迭代器类⼀样,重载 operator*/operator->/operator[] 等运算符,⽅便访问资源。

#include<vector>
template<class T>
class SmartPtr
{
public:
	SmartPtr(T* ptr = nullptr)
		:_ptr(ptr)
	{}
	T& operator*()
	{
		return *_ptr;
	}
	T* operator->()
	{
		return _ptr;
	}
	~SmartPtr()
	{
		cout << "delete _ptr" << endl;
		if (_ptr)
			delete _ptr;
	}
private:
	T* _ptr;
};
void func1()
{
	//抛出异常
	throw string("这是一个异常");
}
void func2()
{
	SmartPtr<int> ptr (new int);
	func1();
	//...
}
int main()
{
	try
	{
		func2();
	}
	catch (const string& s)
	{
		cout << s << endl;
	}
	catch (...)
	{
		cout << "未知异常" << endl;
	}
	return 0;
}


三、 C++标准库智能指针的使用

• C++标准库中的智能指针都在这个头⽂件下⾯,我们包含就可以是使⽤了,智能指针有好⼏种,除了weak_ptr他们都符合RAII和像指针⼀样访问的⾏为,原理上⽽⾔主要是解决智能指针拷⻉时的思路不同。
• auto_ptr是C++98时设计出来的智能指针,他的特点是拷⻉时把被拷⻉对象的资源的管理权转移给拷⻉对象,这是⼀个⾮常糟糕的设计,因为他会到被拷⻉对象悬空,访问报错的问题,C++11设计出新的智能指针后,强烈建议不要使⽤auto_ptr。其他C++11出来之前很多公司也是明令禁⽌使⽤这个智能指针的。
• unique_ptr是C++11设计出来的智能指针,他的名字翻译出来是唯⼀指针,他的特点的不⽀持拷⻉,只⽀持移动。如果不需要拷⻉的场景就⾮常建议使⽤他。
• shared_ptr是C++11设计出来的智能指针,他的名字翻译出来是共享指针,他的特点是⽀持拷⻉,也⽀持移动。如果需要拷⻉的场景就需要使⽤他了。底层是⽤引⽤计数的⽅式实现的。
• weak_ptr是C++11设计出来的智能指针,他的名字翻译出来是弱指针,他完全不同于上⾯的智能指针,他不⽀持RAII,也就意味着不能⽤它直接管理资源,weak_ptr的产⽣本质是要解决shared_ptr的⼀个循环引⽤导致内存泄漏的问题。具体细节下⾯我们再细讲。
• 智能指针析构时默认是进⾏delete释放资源,这也就意味着如果不是new出来的资源,交给智能指针管理,析构时就会崩溃。智能指针⽀持在构造时给⼀个删除器,所谓删除器本质就是⼀个可调⽤对象,这个可调⽤对象中实现你想要的释放资源的⽅式,当构造智能指针时,给了定制的删除器,在智能指针析构时就会调⽤删除器去释放资源。因为new[]经常使⽤,所以为了简洁⼀点,unique_ptr和shared_ptr都特化了⼀份[]的版本,使⽤时unique_ptr<Date[]> up1(new Date[5]);shared_ptr<Date[]> sp1(new Date[5]); 就可以管理new []的资源。
• template <class T, class… Args> shared_ptr make_shared(Args&&… args);
• shared_ptr 除了⽀持⽤指向资源的指针构造,还⽀持 make_shared ⽤初始化资源对象的值
直接构造。
• shared_ptr 和 unique_ptr 都⽀持了operator bool的类型转换,如果智能指针对象是⼀个
空对象没有管理资源,则返回false,否则返回true,意味着我们可以直接把智能指针对象给if判断是否为空。
• shared_ptr 和 unique_ptr 都得构造函数都使⽤explicit 修饰,防⽌普通指针隐式类型转换
成智能指针对象。

这里需要重点对重点对shared_ptr进行学习及实现!

1.4 智能指针的原理

• 下⾯我们模拟实现了auto_ptr和unique_ptr的核⼼功能,这两个智能指针的实现⽐较简单,⼤家了解⼀下原理即可。auto_ptr的思路是拷⻉时转移资源管理权给被拷⻉对象,这种思路是不被认可的,也不建议使⽤。unique_ptr的思路是不⽀持拷⻉。
• ⼤家重点要看看shared_ptr是如何设计的,尤其是引⽤计数的设计,主要这⾥⼀份资源就需要⼀个引⽤计数,所以引⽤计数才⽤静态成员的⽅式是⽆法实现的,要使⽤堆上动态开辟的⽅式,构造智能指针对象时来⼀份资源,就要new⼀个引⽤计数出来。多个shared_ptr指向资源时就++引⽤计数,shared_ptr对象析构时就–引⽤计数,引⽤计数减到0时代表当前析构的shared_ptr是最后⼀个管理资源的对象,则析构资源。

在这里插入图片描述

struct Date
{
	int _year;
	int _month;
	int _day;
	Date(int year = 1, int month = 1, int day = 1)
		:_year(year)
		, _month(month)
		, _day(day)
	{}
	~Date()
	{
		cout << "~Date()" << endl;
	}
};
namespace bit
{
	template<class T>
	class auto_ptr
	{
	public:
		auto_ptr(T* ptr)
			:_ptr(ptr)
		{}
		auto_ptr(auto_ptr<T>& sp)
			:_ptr(sp._ptr)
		{
			// 管理权转移
			sp._ptr = nullptr;
		}
		auto_ptr<T>& operator=(auto_ptr<T>& ap)
		{
			// 检测是否为⾃⼰给⾃⼰赋值
			if (this != &ap)
			{
				// 释放当前对象中资源
				if (_ptr)
					delete _ptr;
				// 转移ap中资源到当前对象中
				_ptr = ap._ptr;
				ap._ptr = NULL;
			}
			return *this;
		}
		~auto_ptr()
		{
			if (_ptr)
			{
				cout << "delete:" << _ptr << endl;
				delete _ptr;
			}
		}
		// 像指针⼀样使⽤
		T& operator*()
		{
			return *_ptr;
		}
		T* operator->()
		{
			return _ptr;
		}
	private:
		T* _ptr;
	};
	template<class T>
	class unique_ptr
	{
	public:
		explicit unique_ptr(T* ptr)
			:_ptr(ptr)
		{}
		~unique_ptr()
		{
			if (_ptr)
			{
				cout << "delete:" << _ptr << endl;
				delete _ptr;
			}
		}
		// 像指针⼀样使⽤
		T& operator*()
		{
			return *_ptr;
		}
		T* operator->()
		{
			return _ptr;
		}
		unique_ptr(const unique_ptr<T>&sp) = delete;
		unique_ptr<T>& operator=(const unique_ptr<T>&sp) = delete;
		unique_ptr(unique_ptr<T> && sp)
			:_ptr(sp._ptr)
		{
			sp._ptr = nullptr;
		}
		unique_ptr<T>& operator=(unique_ptr<T> && sp)
		{
			delete _ptr;
			_ptr = sp._ptr;
			sp._ptr = nullptr;
		}
	private:
		T* _ptr;
	};
	template<class T>
	class shared_ptr
	{
	public:
		explicit shared_ptr(T* ptr = nullptr)
			: _ptr(ptr)
			, _pcount(new int(1))
		{}
		template<class D>
		shared_ptr(T* ptr, D del)
			: _ptr(ptr)
			, _pcount(new int(1))
			, _del(del)
		{}
		shared_ptr(const shared_ptr<T>& sp)
			:_ptr(sp._ptr)
			, _pcount(sp._pcount)
			, _del(sp._del)
		{
			++(*_pcount);
		}
		void release()
		{
			if (--(*_pcount) == 0)
			{
				// 最后⼀个管理的对象,释放资源
				_del(_ptr);
				delete _pcount;
				_ptr = nullptr;
				_pcount = nullptr;
			}
		}
		shared_ptr<T>& operator=(const shared_ptr<T>& sp)
		{
			if (_ptr != sp._ptr)
			{
				release();
				_ptr = sp._ptr;
				_pcount = sp._pcount;
				++(*_pcount);
				_del = sp._del;
			}
			return *this;
		}
		~shared_ptr()
		{
			release();
		}
		T* get() const
		{
			return _ptr;
		}
		int use_count() const
		{
			return *_pcount;
		}
		T& operator*()
		{
			return *_ptr;
		}
		T* operator->()
		{
			return _ptr;
		}
	private:
		T* _ptr;
		int* _pcount;
		//atomic<int>* _pcount;
		function<void(T*)> _del = [](T* ptr) {delete ptr; };
	};
	// 需要注意的是我们这⾥实现的shared_ptr和weak_ptr都是以最简洁的⽅式实现的,
	// 只能满⾜基本的功能,这⾥的weak_ptr lock等功能是⽆法实现的,想要实现就要
	// 把shared_ptr和weak_ptr⼀起改了,把引⽤计数拿出来放到⼀个单独类型,shared_ptr
	// 和weak_ptr都要存储指向这个类的对象才能实现,有兴趣可以去翻翻源代码
	template<class T>
	class weak_ptr
	{
	public:
		weak_ptr()
		{}
		weak_ptr(const shared_ptr<T>& sp)
			:_ptr(sp.get())
		{}
		weak_ptr<T>& operator=(const shared_ptr<T>& sp)
		{
			_ptr = sp.get();
			return *this;
		}
	private:
		T* _ptr = nullptr;
	};
}
int main()
{
	bit::auto_ptr<Date> ap1(new Date);
	// 拷⻉时,管理权限转移,被拷⻉对象ap1悬空
	bit::auto_ptr<Date> ap2(ap1);
	// 空指针访问,ap1对象已经悬空
	//ap1->_year++;
	bit::unique_ptr<Date> up1(new Date);
	// 不⽀持拷⻉
	//unique_ptr<Date> up2(up1);
	// ⽀持移动,但是移动后up1也悬空,所以使⽤移动要谨慎
	bit::unique_ptr<Date> up3(move(up1));
	bit::shared_ptr<Date> sp1(new Date);
	// ⽀持拷⻉
	bit::shared_ptr<Date> sp2(sp1);
	bit::shared_ptr<Date> sp3(sp2);
	cout << sp1.use_count() << endl;
	sp1->_year++;
	cout << sp1->_year << endl;
	cout << sp2->_year << endl;
	cout << sp3->_year << endl;
	return 0;
} 

四、share_ptr 和 wear_ptr

(一) share_ptr循环引用问题

• shared_ptr⼤多数情况下管理资源⾮常合适,⽀持RAII,也⽀持拷⻉。但是在循环引⽤的场景下会导致资源没得到释放内存泄漏,所以我们要认识循环引⽤的场景和资源没释放的原因,并且学会使⽤weak_ptr解决这种问题。
• 如下图所述场景,n1和n2析构后,管理两个节点的引⽤计数减到1

  1. 右边的节点什么时候释放呢,左边节点中的_next管着呢,_next析构后,右边的节点就释放了。
  2. _next什么时候析构呢,_next是左边节点的的成员,左边节点释放,_next就析构了。
  3. 左边节点什么时候释放呢,左边节点由右边节点中的_prev管着呢,_prev析构后,左边的节点就释
    放了。
  4. _prev什么时候析构呢,_prev是右边节点的成员,右边节点释放,_prev就析构了。

• ⾄此逻辑上成功形成回旋镖似的循环引⽤,谁都不会释放就形成了循环引⽤,导致内存泄漏;
• 把ListNode结构体中的_next和_prev改成weak_ptr,weak_ptr绑定到shared_ptr时不会增加它的引⽤计数,_next和_prev不参与资源释放管理逻辑,就成功打破了循环引⽤,解决了这⾥的问题 。

在这里插入图片描述
在这里插入图片描述

struct ListNode
{
	int _data;
	std::shared_ptr<ListNode> _next;
	std::shared_ptr<ListNode> _prev;
	// 这⾥改成weak_ptr,当n1->_next = n2;绑定shared_ptr时
	// 不增加n2的引⽤计数,不参与资源释放的管理,就不会形成循环引⽤了
	/*std::weak_ptr<ListNode> _next;
	std::weak_ptr<ListNode> _prev;*/
	~ListNode()
	{
		cout << "~ListNode()" << endl;
	}
};
int main()
{
	// 循环引⽤ -- 内存泄露
	std::shared_ptr<ListNode> n1(new ListNode);
	std::shared_ptr<ListNode> n2(new ListNode);
	cout << n1.use_count() << endl;
	cout << n2.use_count() << endl;
	n1->_next = n2;
	n2->_prev = n1;
	cout << n1.use_count() << endl;
	cout << n2.use_count() << endl;
	// weak_ptr不⽀持管理资源,不⽀持RAII
	// weak_ptr是专⻔绑定shared_ptr,不增加他的引⽤计数,作为⼀些场景的辅助管理
	//std::weak_ptr<ListNode> wp(new ListNode);
	return 0;
}

(二) weak_ptr

• weak_ptr不⽀持RAII,也不⽀持访问资源,所以我们看⽂档发现weak_ptr构造时不⽀持绑定到资源,只⽀持绑定到shared_ptr,绑定到shared_ptr时,不增加shared_ptr的引⽤计数,那么就可以解决上述的循环引⽤问题。
• weak_ptr也没有重载operator*和operator->等,因为他不参与资源管理,那么如果他绑定的shared_ptr已经释放了资源,那么他去访问资源就是很危险的。weak_ptr⽀持expired检查指向的资源是否过期,use_count也可获取shared_ptr的引⽤计数,weak_ptr想访问资源时,可以调⽤lock返回⼀个管理资源的shared_ptr,如果资源已经被释放,返回的shared_ptr是⼀个空对象,如果资源没有释放,则通过返回的shared_ptr访问资源是安全的。

int main()
{
  	std::shared_ptr<string> sp1(new string("111111"));
	std::shared_ptr<string> sp2(sp1);
	std::weak_ptr<string> wp = sp1;
	cout << wp.expired() << endl;
	cout << wp.use_count() << endl;
	
	// sp1和sp2都指向了其他资源,则weak_ptr就过期了
	sp1 = make_shared<string>("222222");
	cout << wp.expired() << endl;
	cout << wp.use_count() << endl;
	
	sp2 = make_shared<string>("333333");
	cout << wp.expired() << endl;
	cout << wp.use_count() << endl;
	
	wp = sp1;
	//std::shared_ptr<string> sp3 = wp.lock();
	auto sp3 = wp.lock();
	cout << wp.expired() << endl;
	cout << wp.use_count() << endl;
	
	*sp3 += "###";
	cout << *sp1 << endl;
	return 0;
}

五、share_ptr的线程安全问题

• shared_ptr的引⽤计数对象在堆上,如果多个shared_ptr对象在多个线程中,进⾏shared_ptr的拷⻉析构时会访问修改引⽤计数,就会存在线程安全问题,所以shared_ptr引⽤计数是需要加锁或者原⼦操作保证线程安全的。
• shared_ptr指向的对象也是有线程安全的问题的,但是这个对象的线程安全问题不归shared_ptr管,它也管不了,应该有外层使⽤shared_ptr的⼈进⾏线程安全的控制。
• 下⾯的程序会崩溃或者A资源没释放,bit::shared_ptr引⽤计数从int*改成atomic*就可以保证引⽤计数的线程安全问题,或者使⽤互斥锁加锁也可以。

struct AA
{
	int _a1 = 0;
	int _a2 = 0;
	~AA()
	{
		cout << "~AA()" << endl;
	}
};
int main()
{
	bit::shared_ptr<AA> p(new AA);
	const size_t n = 100000;
	mutex mtx;
	auto func = [&]()
	{
		for (size_t i = 0; i < n; ++i)
		{
			// 这⾥智能指针拷⻉会++计数
			bit::shared_ptr<AA> copy(p);
			{
				unique_lock<mutex> lk(mtx);
				copy->_a1++;
				copy->_a2++;
			}
		}
	};
	thread t1(func);
	thread t2(func);
	t1.join();
	t2.join();
	cout << p->_a1 << endl;
	cout << p->_a2 << endl;
	cout << p.use_count() << endl;
	return 0;
} 

六、内存泄露

(一) 内存泄露的概念及危害

什么是内存泄漏:内存泄漏指因为疏忽或错误造成程序未能释放已经不再使⽤的内存,⼀般是忘记释放或者发⽣异常释放程序未能执⾏导致的。内存泄漏并不是指内存在物理上的消失,⽽是应⽤程序分配某段内存后,因为设计错误,失去了对该段内存的控制,因⽽造成了内存的浪费。
内存泄漏的危害:普通程序运⾏⼀会就结束了出现内存泄漏问题也不⼤,进程正常结束,⻚表的映射关系解除,物理内存也可以释放。⻓期运⾏的程序出现内存泄漏,影响很⼤,如操作系统、后台服务、⻓时间运⾏的客⼾端等等,不断出现内存泄漏会导致可⽤内存不断变少,各种功能响应越来越慢,最终卡死。

int main()
{
	// 申请⼀个1G未释放,这个程序多次运⾏也没啥危害
	// 因为程序⻢上就结束,进程结束各种资源也就回收了
	char* ptr = new char[1024 * 1024 * 1024];
	cout << (void*)ptr << endl;
	return 0;
}

(二) 内存泄漏检查(了解)

• Linux下内存泄漏检测:Linux下⼏款内存泄漏检测⼯具
• windows下使⽤第三⽅⼯具:windows下的内存泄露检测⼯具VLD使⽤_windows内存泄漏检测⼯具-CSDN博客

(三) 如何避免内存泄露

• ⼯程前期良好的设计规范,养成良好的编码规范,申请的内存空间记着匹配的去释放。ps:这个理想状态。但是如果碰上异常时,就算注意释放了,还是可能会出问题。需要下⼀条智能指针来管理才有保证。
• 尽量使⽤智能指针来管理资源,如果⾃⼰场景⽐较特殊,采⽤RAII思想⾃⼰造个轮⼦管理。
• 定期使⽤内存泄漏⼯具检测,尤其是每次项⽬快上线前,不过有些⼯具不够靠谱,或者是收费。
• 总结⼀下:内存泄漏⾮常常⻅。

解决⽅案分为两种:
1、事前预防型。如智能指针等。
2、事后查错型。如泄漏检测⼯具。


Logo

有“AI”的1024 = 2048,欢迎大家加入2048 AI社区

更多推荐