隐函数存在定理
隐函数存在定理例题:1.设有二元函数xy−zlny+z2=1x y-z \ln y+z^{2}=1xy−zlny+z2=1,根据隐函数存在定理,存在点(1,1,0)(1,1,0)(1,1,0)的一个邻域,在此邻域内该方程()A.只能确定一个具有连续偏导数的隐函数z=z(x,y)z=z(x, y)z=z(x,y)B.可确定两个具有连续偏导数的隐函数y=y(x,z)y=y(x, z)y=y(x,z)
隐函数存在定理
例题:
1.设有二元函数xy−zlny+z2=1x y-z \ln y+z^{2}=1xy−zlny+z2=1,根据隐函数存在定理,存在点(1,1,0)(1,1,0)(1,1,0)的一个邻域,在此邻域内该方程()
A.只能确定一个具有连续偏导数的隐函数z=z(x,y)z=z(x, y)z=z(x,y)
B.可确定两个具有连续偏导数的隐函数y=y(x,z)y=y(x, z)y=y(x,z)和z=z(x,y)z=z(x, y)z=z(x,y)
C.可确定两个具有连续偏导数的隐函数x=x(y,z)x=x(y, z)x=x(y,z)和z=z(x,y)z=z(x, y)z=z(x,y)
D.可确定两个具有连续偏导数的隐函数x=x(y,z)x=x(y, z)x=x(y,z)和y=y(x,z)y=y(x, z)y=y(x,z)
解析:令
F(x,y,z)=xy−zlny+z2−1F(x, y, z)=x y-z \ln y+z^{2}-1F(x,y,z)=xy−zlny+z2−1
则
F(1,1,0)=0F(1,1,0)=0F(1,1,0)=0
且
Fx′=y,Fy′=x−zy,Fz′=−lny+2zFx′(1,1,0)=1,Fy′(1,1,0)=1,Fz′(1,1,0)=0\begin{array}{c} F_{x}^{\prime}=y, F_{y}^{\prime}=x-\frac{z}{y}, F_{z}^{\prime}=-\ln y+2 z \\ F_{x}^{\prime}(1,1,0)=1, F_{y}^{\prime}(1,1,0)=1, F_{z}^{\prime}(1,1,0)=0 \end{array}Fx′=y,Fy′=x−yz,Fz′=−lny+2zFx′(1,1,0)=1,Fy′(1,1,0)=1,Fz′(1,1,0)=0
由隐函数存在定理可知,只能确定两个具有连续偏导数的函数x=x(y,z)x=x(y, z)x=x(y,z)和y=y(x,z)y=y(x, z)y=y(x,z),故应选D。
注解:
隐函数存在定理1:设函数F(x,y)F(x, y)F(x,y)在点P(x0,y0)P\left(x_{0}, y_{0}\right)P(x0,y0)的某一邻域内具有连续偏导数,且F(x0,y0)=0,Fy(x0,y0)≠0F\left(x_{0}, y_{0}\right)=0, F_{y}\left(x_{0}, y_{0}\right) \neq 0F(x0,y0)=0,Fy(x0,y0)=0,则方程F(x,y)=0F(x, y)=0F(x,y)=0在点(x0,y0)\left(x_{0}, y_{0}\right)(x0,y0)的某一个邻域内恒内确定一个连续且具有连续导数的函数y=f(x)y=f(x)y=f(x),它满足条件y0=f(x0)y_{0}=f\left(x_{0}\right)y0=f(x0),并有
dydx=−FxFy\frac{\mathrm{d} y}{\mathrm{d} x}=-\frac{F_{x}}{F_{y}}dxdy=−FyFx
隐函数存在定理2:设函数F(x,y,z)F(x, y, z)F(x,y,z)在点P(x0,y0,z0)P\left(x_{0}, y_{0}, z_{0}\right)P(x0,y0,z0)的某一邻域内具有连续偏导数,且F(x0,y0,z0)=0,Fz(x0,y0,z0)≠0F\left(x_{0}, y_{0}, z_{0}\right)=0, F_{z}\left(x_{0}, y_{0}, z_{0}\right) \neq 0F(x0,y0,z0)=0,Fz(x0,y0,z0)=0,则方程F(x,y,z)=0F(x, y, z)=0F(x,y,z)=0在点(x0,y0,z0)\left(x_{0}, y_{0}, z_{0}\right)(x0,y0,z0)的某一邻域内恒能唯一确定一个连续且具有连续偏导数的函数z=f(x,y)z=f(x,y)z=f(x,y),他满足条件z0=f(x0,y0)z_{0}=f\left(x_{0}, y_{0}\right)z0=f(x0,y0),并有
∂z∂x=−FxFz,∂z∂y=−FyFz\frac{\partial z}{\partial x}=-\frac{F_{x}}{F_{z}}, \frac{\partial z}{\partial y}=-\frac{F_{y}}{F_{z}}∂x∂z=−FzFx,∂y∂z=−FzFy
隐函数存在定理3:设F(x,y,u,v),G(x,y,u,v)F(x, y, u, v), G(x, y, u, v)F(x,y,u,v),G(x,y,u,v)在点P(x0,y0,u0,v0)P\left(x_{0}, y_{0}, u_{0}, v_{0}\right)P(x0,y0,u0,v0)的某一邻域内具有对各个变量的连续偏导数,又F(x0,y0,u0,v0)=0,G(x0,y0,u0,v0)=0F\left(x_{0}, y_{0}, u_{0}, v_{0}\right)=0, G\left(x_{0}, y_{0}, u_{0}, v_{0}\right)=0F(x0,y0,u0,v0)=0,G(x0,y0,u0,v0)=0,且偏导数所组成的函数行列式
J=∂(F,G)∂(u,v)=∣∂F∂u∂F∂v∂G∂u∂G∂v∣J=\frac{\partial(F, G)}{\partial(u, v)}=\left|\begin{array}{ll} \frac{\partial F}{\partial u} & \frac{\partial F}{\partial v} \\ \frac{\partial G}{\partial u} & \frac{\partial G}{\partial v} \end{array}\right|J=∂(u,v)∂(F,G)=∣∣∣∣∂u∂F∂u∂G∂v∂F∂v∂G∣∣∣∣
在点P(x0,y0,u0,v0)P\left(x_{0}, y_{0}, u_{0}, v_{0}\right)P(x0,y0,u0,v0)不等于零,则方程则F(x,y,u,v)=0,G(x,y,u,v)=0F(x, y, u, v)=0, G(x, y, u, v)=0F(x,y,u,v)=0,G(x,y,u,v)=0在点(x0,y0,u0,v0)\left(x_{0}, y_{0}, u_{0}, v_{0}\right)(x0,y0,u0,v0)的某一邻域内恒能确定一组连续且具有连续偏导数的函数u=u(x,y),v=v(x,y)u=u(x, y), v=v(x, y)u=u(x,y),v=v(x,y),他们满足条件u0=u(x0,y0),v0=v(x0,y0)u_{0}=u\left(x_{0}, y_{0}\right), v_{0}=v\left(x_{0}, y_{0}\right)u0=u(x0,y0),v0=v(x0,y0)
隐函数存在定理的应用:
例一:方程
x2y2−3y+2x3=0 x^{2} y^{2}-3 y+2 x^{3}=0 x2y2−3y+2x3=0
在点(1,1)(1,1)(1,1)与(1,2)(1,2)(1,2)两点的近旁定义着yyy为xxx的函数,试求f′(1)f^{\prime}(1)f′(1)
解析:令F(x,y)=x2y2−3y+2x3F(x, y)=x^{2} y^{2}-3 y+2 x^{3}F(x,y)=x2y2−3y+2x3,我们有F(1,1)=0F(1,1)=0F(1,1)=0及F(1,2)=0F(1,2)=0F(1,2)=0,此外:
∂F∂y(x,y)=2x2y−3 \frac{\partial F}{\partial y}(x, y)=2 x^{2} y-3 ∂y∂F(x,y)=2x2y−3
∂F∂y(1,1)=−1,∂F∂y(1,2)=1 \frac{\partial F}{\partial y}(1,1)=-1, \frac{\partial F}{\partial y}(1,2)=1 ∂y∂F(1,1)=−1,∂y∂F(1,2)=1
因此在(1,1)(1,1)(1,1)近旁
f′(1)=−∂F∂x(1,1)∂F∂y(1,1)=−8−1=8 f^{\prime}(1)=-\frac{\frac{\partial F}{\partial x}(1,1)}{\frac{\partial F}{\partial y}(1,1)}=\frac{-8}{-1}=8 f′(1)=−∂y∂F(1,1)∂x∂F(1,1)=−1−8=8
在(1,2)(1,2)(1,2)近旁
f′(1)=−∂F∂x(1,2)∂F∂y(1,2)=−141=−14 f^{\prime}(1)=\frac{-\frac{\partial F}{\partial x}(1,2)}{\frac{\partial F}{\partial y}(1,2)}=\frac{-14}{1}=-14 f′(1)=∂y∂F(1,2)−∂x∂F(1,2)=1−14=−14
这个例子不通过隐函数定理也能算出需要的答案,因为方程x2y2−3y+2x3=0x^{2} y^{2}-3 y+2 x^{3}=0x2y2−3y+2x3=0可以看做是yyy的二次方程,从中容易解出yyy对于xxx的依赖关系,然后直接求导即可。
例二:方程
sinx+logy−xy3=0 \sin x+\log y-x y^{3}=0 sinx+logy−xy3=0
在点(0,1)(0,1)(0,1)的近旁确定函数y=f(x)y=f(x)y=f(x),求f′(0)f^{\prime}(0)f′(0)
解析:令F(x,y)=sinx+logy−xy3F(x, y)=\sin x+\log y-x y^{3}F(x,y)=sinx+logy−xy3,那么F(0,1)=0F(0,1)=0F(0,1)=0,而且:
∂F(0,1)∂x=0,∂F(0,1)∂y=1 \frac{\partial F(0,1)}{\partial x}=0, \frac{\partial F(0,1)}{\partial y}=1 ∂x∂F(0,1)=0,∂y∂F(0,1)=1
因此:
f′(0)=−∂F∂x(0,1)∂F∂y(0,1)=0 f^{\prime}(0)=-\frac{\frac{\partial F}{\partial x}(0,1)}{\frac{\partial F}{\partial y}(0,1)}=0 f′(0)=−∂y∂F(0,1)∂x∂F(0,1)=0
这个例子就非用隐函数定理不可,因为从给出的方程中无法解出yyy对xxx的显示关系
更多推荐
所有评论(0)