(xu)′=μxk−1∫μxn−1dx=xμ+c \left(x^{u}\right)^{\prime}=\mu x^{k-1} \quad \quad \int \mu x^{n-1} \mathrm{d} x=x^{\mu}+c (xu)=μxk1μxn1dx=xμ+c

(xmp)′=m−ppxmp∫mpxm−ppdx=xmp=xmp+c (\sqrt[p]{x^{m}})^{\prime}=\frac{m-p}{p} x^{\frac{m}{p}} \quad \int \frac{m}{p} x^{\frac{m-p}{p}} \mathrm{d} x=x^{\frac{m}{p}}=\sqrt[p]{x^{m}}+c (pxm )=pmpxpmpmxpmpdx=xpm=pxm +c

(ln⁡∣x∣)′=1x∫1xdx=ln⁡∣x∣+c (\ln |x|)^{\prime}=\frac{1}{x} \quad \int \frac{1}{x} \mathrm{d} x=\ln |x|+c (lnx)=x1x1dx=lnx+c

(ex)′=ex∫exdx=ex+c \left(\mathrm{e}^{x}\right)^{\prime}=\mathrm{e}^{x} \quad \int \mathrm{e}^{x} \mathrm{d} x=\mathrm{e}^{x}+c (ex)=exexdx=ex+c

(ax)′=axln⁡a∫axdx=axln⁡a+c \left(a^{x}\right)^{\prime}=a^{x} \ln a \quad \int a^{x} \mathrm{d} x=\frac{a^{x}}{\ln a}+c (ax)=axlnaaxdx=lnaax+c

(sin⁡x)′=cos⁡x∫cos⁡xdx=sin⁡x+c (\sin x)^{\prime}=\cos x \quad \int \cos x d x=\sin x+c (sinx)=cosxcosxdx=sinx+c

(cos⁡x)′=−sin⁡x∫sin⁡xdx=−cos⁡x+c (\cos x)^{\prime}=-\sin x \quad \int \sin x d x=-\cos x+c (cosx)=sinxsinxdx=cosx+c

(tan⁡x)′=sec⁡2x∫sec⁡2xdx=tan⁡x+c (\tan x)^{\prime}=\sec ^{2} x \quad \int \sec ^{2} x d x=\tan x+c (tanx)=sec2xsec2xdx=tanx+c

(cot⁡x)′=−csc⁡2x∫csc⁡2xdx=−cot⁡x+c (\cot x)^{\prime}=-\csc ^{2} x \quad \int \csc ^{2} x d x=-\cot x+c (cotx)=csc2xcsc2xdx=cotx+c

(sec⁡x)′=sec⁡xtan⁡x∫sec⁡xtan⁡xdx=sec⁡x+c (\sec x)^{\prime}=\sec x \tan x \quad \int \sec x \tan x d x=\sec x+c (secx)=secxtanxsecxtanxdx=secx+c

(csc⁡x)′=−csc⁡xcot⁡x∫csc⁡xcot⁡xdx=−csc⁡x+c (\csc x)^{\prime}=-\csc x \cot x \quad \int \csc x \cot x d x=-\csc x+c (cscx)=cscxcotxcscxcotxdx=cscx+c

(arcsin⁡x)′=11−x2∫11−x2dx=arcsin⁡x+c (\arcsin x)^{\prime}=\frac{1}{\sqrt{1-x^{2}}} \quad \int \frac{1}{\sqrt{1-x^{2}}} \mathrm{d} x=\arcsin x+c (arcsinx)=1x2 11x2 1dx=arcsinx+c

(arccos⁡x)′=−11−x2∫11−x2dx=−arccos⁡x+c (\arccos x)^{\prime}=-\frac{1}{\sqrt{1-x^{2}}} \quad \int \frac{1}{\sqrt{1-x^{2}}} \mathrm{d} x=-\arccos x+c (arccosx)=1x2 11x2 1dx=arccosx+c

(arctan⁡x)′=11+x2∫11+x2dx=arctan⁡x+c (\arctan x)^{\prime}=\frac{1}{1+x^{2}} \quad \int \frac{1}{1+x^{2}} \mathrm{d} x=\arctan x+c (arctanx)=1+x211+x21dx=arctanx+c

(arccot⁡x)′=−11+x2∫11+x2dx=−arccot⁡x+c (\operatorname{arccot} x)^{\prime}=-\frac{1}{1+x^{2}} \quad \int \frac{1}{1+x^{2}} \mathrm{d} x=-\operatorname{arccot} x+c (arccotx)=1+x211+x21dx=arccotx+c

(arcsec⁡x)′=1xx2−1∫1xx2−1dx=arcsec⁡x+c (\operatorname{arcsec} x)^{\prime}=\frac{1}{x \sqrt{x^{2}-1}} \quad \int \frac{1}{x \sqrt{x^{2}-1}} \mathrm{d} x=\operatorname{arcsec} x+c (arcsecx)=xx21 1xx21 1dx=arcsecx+c

(arccsc⁡x)′=−1xx2−1∫1xx2−1dx=−arccsc⁡x+c (\operatorname{arccsc} x)^{\prime}=-\frac{1}{x \sqrt{x^{2}-1}} \quad \int \frac{1}{x \sqrt{x^{2}-1}} \mathrm{d} x=-\operatorname{arccsc} x+c (arccscx)=xx21 1xx21 1dx=arccscx+c

(ln⁡∣x+x2±b∣)′=1x2±b∫1x2±bdx=ln⁡∣x+x2±b∣+c (\ln |x+\sqrt{x^{2} \pm b}|)^{\prime}=\frac{1}{\sqrt{x^{2} \pm b}} \quad \int \frac{1}{\sqrt{x^{2} \pm b}} \mathrm{d} x=\ln |x+\sqrt{x^{2} \pm b}|+c (lnx+x2±b )=x2±b 1x2±b 1dx=lnx+x2±b +c

补充:几个特殊的三角函数积分公式

∫sin⁡2xdx=x2−sin⁡2x4+C(sin⁡2x=1−cos⁡2x2) \int \sin ^{2} x \mathrm{d} x=\frac{x}{2}-\frac{\sin 2 x}{4}+C\left(\sin ^{2} x=\frac{1-\cos 2 x}{2}\right) sin2xdx=2x4sin2x+C(sin2x=21cos2x)

∫cos⁡2xdx=x2+sin⁡2x4+C(cos⁡2x=1+cos⁡2x2) \int \cos ^{2} x \mathrm{d} x=\frac{x}{2}+\frac{\sin 2 x}{4}+C\left(\cos ^{2} x=\frac{1+\cos 2 x}{2}\right) cos2xdx=2x+4sin2x+C(cos2x=21+cos2x)

∫tan⁡2xdx=tan⁡x−x+C(tan⁡2x=sec⁡2x−1) \int \tan ^{2} x \mathrm{d} x=\tan x-x+C\left(\tan ^{2} x=\sec ^{2} x-1\right) tan2xdx=tanxx+C(tan2x=sec2x1)

∫cot⁡2xdx=−cot⁡x−x+C(cot⁡2x=csc⁡2x−1) \int \cot ^{2} x \mathrm{d} x=-\cot x-x+C\left(\cot ^{2} x=\csc ^{2} x-1\right) cot2xdx=cotxx+C(cot2x=csc2x1)

Logo

有“AI”的1024 = 2048,欢迎大家加入2048 AI社区

更多推荐