LangGraph工作流与智能体
本节介绍常见的工作流与智能体模式。
-
工作流:拥有预先确定的代码执行路径,按固定顺序运行。
-
智能体:动态自主,自行决定执行流程与工具使用方式。
使用 LangGraph 构建智能体与工作流有诸多优势,包括持久化、流式输出,同时支持调试与部署。
环境配置
构建工作流或智能体时,可使用任何支持结构化输出与工具调用的聊天模型。以下示例使用 Anthropic:
- 安装依赖:
pip install langchain_core langchain-anthropic langgraph
- 初始化大语言模型:
import os
import getpass
from langchain_anthropic import ChatAnthropic
def _set_env(var: str):
if not os.environ.get(var):
os.environ[var] = getpass.getpass(f"{var}: ")
_set_env("ANTHROPIC_API_KEY")
llm = ChatAnthropic(model="claude-sonnet-4-5-20250929")
大模型与增强能力
工作流与智能体系统基于大模型及其各类增强能力构建。
工具调用、结构化输出、短期记忆等能力可按需定制。
# 结构化输出 schema
from pydantic import BaseModel, Field
class SearchQuery(BaseModel):
search_query: str = Field(None, description="优化后的网络搜索查询")
justification: str = Field(
None, description="说明该查询与用户请求相关的原因"
)
# 为大模型添加结构化输出增强
structured_llm = llm.with_structured_output(SearchQuery)
# 调用增强后的大模型
output = structured_llm.invoke("钙CT评分与高胆固醇有何关联?")
# 定义工具
def multiply(a: int, b: int) -> int:
return a * b
# 为大模型绑定工具
llm_with_tools = llm.bind_tools([multiply])
# 输入会触发工具调用的内容
msg = llm_with_tools.invoke("2乘以3等于多少?")
# 获取工具调用信息
msg.tool_calls
提示词链
提示词链指每次大模型调用都会处理上一次调用的输出,常用于可拆解为多个可验证小步骤的明确任务,例如:
-
将文档翻译成不同语言
-
校验生成内容的一致性
Graph API
from typing_extensions import TypedDict
from langgraph.graph import StateGraph, START, END
from IPython.display import Image, display
# 图状态
class State(TypedDict):
topic: str
joke: str
improved_joke: str
final_joke: str
# 节点
def generate_joke(state: State):
"""第一次 LLM 调用:生成初始笑话"""
msg = llm.invoke(f"写一个关于{state['topic']}的短笑话")
return {"joke": msg.content}
def check_punchline(state: State):
"""判断笑话是否有笑点"""
if "?" in state["joke"] or "!" in state["joke"]:
return "Pass"
return "Fail"
def improve_joke(state: State):
"""第二次 LLM 调用:优化笑话"""
msg = llm.invoke(f"用文字游戏让这个笑话更有趣:{state['joke']}")
return {"improved_joke": msg.content}
def polish_joke(state: State):
"""第三次 LLM 调用:最终润色"""
msg = llm.invoke(f"给这个笑话加一个惊喜反转:{state['improved_joke']}")
return {"final_joke": msg.content}
# 构建工作流
workflow = StateGraph(State)
# 添加节点
workflow.add_node("generate_joke", generate_joke)
workflow.add_node("improve_joke", improve_joke)
workflow.add_node("polish_joke", polish_joke)
# 连接节点
workflow.add_edge(START, "generate_joke")
workflow.add_conditional_edges(
"generate_joke",
check_punchline,
{"Fail": "improve_joke", "Pass": END}
)
workflow.add_edge("improve_joke", "polish_joke")
workflow.add_edge("polish_joke", END)
# 编译
chain = workflow.compile()
# 展示流程图
display(Image(chain.get_graph().draw_mermaid_png()))
# 调用
state = chain.invoke({"topic": "cats"})
print("Initial joke:")
print(state["joke"])
print("\n--- --- ---\n")
if "improved_joke" in state:
print("Improved joke:")
print(state["improved_joke"])
print("\n--- --- ---\n")
print("Final joke:")
print(state["final_joke"])
else:
print("Final joke:")
print(state["joke"])
Functional API
from langgraph.func import entrypoint, task
# 任务
@task
def generate_joke(topic: str):
"""第一次 LLM 调用:生成初始笑话"""
msg = llm.invoke(f"写一个关于{topic}的短笑话")
return msg.content
def check_punchline(joke: str):
"""判断笑话是否有笑点"""
if "?" in joke or "!" in joke:
return "Pass"
return "Fail"
@task
def improve_joke(joke: str):
"""第二次 LLM 调用:优化笑话"""
msg = llm.invoke(f"用文字游戏让这个笑话更有趣:{joke}")
return msg.content
@task
def polish_joke(joke: str):
"""第三次 LLM 调用:最终润色"""
msg = llm.invoke(f"给这个笑话加一个惊喜反转:{joke}")
return msg.content
@entrypoint()
def prompt_chaining_workflow(topic: str):
original_joke = generate_joke(topic).result()
if check_punchline(original_joke) == "Pass":
return original_joke
improved_joke = improve_joke(original_joke).result()
return polish_joke(improved_joke).result()
# 调用
for step in prompt_chaining_workflow.stream("cats", stream_mode="updates"):
print(step)
print("\n")
并行执行
并行执行指多个大模型同时处理任务,可同时运行多个独立子任务,或多次运行同一任务以对比输出。
常见用途:
-
拆分子任务并行执行,提升速度
-
多次运行任务以验证输出,提高可靠性
例如:
-
一个子任务提取文档关键词,另一个检查格式错误
-
用不同标准多次评分,评估文档准确性
Graph API
# 图状态
class State(TypedDict):
topic: str
joke: str
story: str
poem: str
combined_output: str
# 节点
def call_llm_1(state: State):
"""生成笑话"""
msg = llm.invoke(f"写一个关于{state['topic']}的笑话")
return {"joke": msg.content}
def call_llm_2(state: State):
"""生成故事"""
msg = llm.invoke(f"写一个关于{state['topic']}的故事")
return {"story": msg.content}
def call_llm_3(state: State):
"""生成诗歌"""
msg = llm.invoke(f"写一首关于{state['topic']}的诗")
return {"poem": msg.content}
def aggregator(state: State):
"""合并结果"""
combined = f"这是关于{state['topic']}的故事、笑话和诗!\n\n"
combined += f"故事:\n{state['story']}\n\n"
combined += f"笑话:\n{state['joke']}\n\n"
combined += f"诗:\n{state['poem']}"
return {"combined_output": combined}
# 构建并行工作流
parallel_builder = StateGraph(State)
parallel_builder.add_node("call_llm_1", call_llm_1)
parallel_builder.add_node("call_llm_2", call_llm_2)
parallel_builder.add_node("call_llm_3", call_llm_3)
parallel_builder.add_node("aggregator", aggregator)
parallel_builder.add_edge(START, "call_llm_1")
parallel_builder.add_edge(START, "call_llm_2")
parallel_builder.add_edge(START, "call_llm_3")
parallel_builder.add_edge("call_llm_1", "aggregator")
parallel_builder.add_edge("call_llm_2", "aggregator")
parallel_builder.add_edge("call_llm_3", "aggregator")
parallel_builder.add_edge("aggregator", END)
parallel_workflow = parallel_builder.compile()
# 展示流程图
display(Image(parallel_workflow.get_graph().draw_mermaid_png()))
# 调用
state = parallel_workflow.invoke({"topic": "cats"})
print(state["combined_output"])
Functional API
@task
def call_llm_1(topic: str):
"""生成笑话"""
msg = llm.invoke(f"写一个关于{topic}的笑话")
return msg.content
@task
def call_llm_2(topic: str):
"""生成故事"""
msg = llm.invoke(f"写一个关于{topic}的故事")
return msg.content
@task
def call_llm_3(topic):
"""生成诗歌"""
msg = llm.invoke(f"写一首关于{topic}的诗")
return msg.content
@task
def aggregator(topic, joke, story, poem):
"""合并结果"""
combined = f"这是关于{topic}的故事、笑话和诗!\n\n"
combined += f"故事:\n{story}\n\n"
combined += f"笑话:\n{joke}\n\n"
combined += f"诗:\n{poem}"
return combined
@entrypoint()
def parallel_workflow(topic: str):
joke_fut = call_llm_1(topic)
story_fut = call_llm_2(topic)
poem_fut = call_llm_3(topic)
return aggregator(
topic,
joke_fut.result(),
story_fut.result(),
poem_fut.result()
).result()
# 调用
for step in parallel_workflow.stream("cats", stream_mode="updates"):
print(step)
print("\n")
路由
路由工作流会先处理输入,再导向对应上下文的专用任务,可实现复杂任务的专用流程。
例如:回答产品相关问题时,先判断问题类型,再路由到定价、退款、退货等专用流程。
Graph API
from typing_extensions import Literal
from langchain.messages import HumanMessage, SystemMessage
# 路由逻辑的结构化输出 schema
class Route(BaseModel):
step: Literal["poem", "story", "joke"] = Field(
None, description="路由流程的下一步"
)
# 路由大模型
router = llm.with_structured_output(Route)
# 状态
class State(TypedDict):
input: str
decision: str
output: str
# 节点
def llm_call_1(state: State):
"""写故事"""
result = llm.invoke(state["input"])
return {"output": result.content}
def llm_call_2(state: State):
"""写笑话"""
result = llm.invoke(state["input"])
return {"output": result.content}
def llm_call_3(state: State):
"""写诗歌"""
result = llm.invoke(state["input"])
return {"output": result.content}
def llm_call_router(state: State):
"""路由到对应节点"""
decision = router.invoke(
[
SystemMessage(content="根据用户请求,将输入路由到故事、笑话或诗歌。"),
HumanMessage(content=state["input"]),
]
)
return {"decision": decision.step}
def route_decision(state: State):
"""条件边函数:路由到对应节点"""
if state["decision"] == "story":
return "llm_call_1"
elif state["decision"] == "joke":
return "llm_call_2"
elif state["decision"] == "poem":
return "llm_call_3"
# 构建路由工作流
router_builder = StateGraph(State)
router_builder.add_node("llm_call_1", llm_call_1)
router_builder.add_node("llm_call_2", llm_call_2)
router_builder.add_node("llm_call_3", llm_call_3)
router_builder.add_node("llm_call_router", llm_call_router)
router_builder.add_edge(START, "llm_call_router")
router_builder.add_conditional_edges(
"llm_call_router",
route_decision,
{
"llm_call_1": "llm_call_1",
"llm_call_2": "llm_call_2",
"llm_call_3": "llm_call_3",
},
)
router_builder.add_edge("llm_call_1", END)
router_builder.add_edge("llm_call_2", END)
router_builder.add_edge("llm_call_3", END)
router_workflow = router_builder.compile()
# 展示流程图
display(Image(router_workflow.get_graph().draw_mermaid_png()))
# 调用
state = router_workflow.invoke({"input": "给我写一个关于猫的笑话"})
print(state["output"])
Functional API
from typing_extensions import Literal
from pydantic import BaseModel, Field
from langchain.messages import HumanMessage, SystemMessage
# 路由逻辑的结构化输出 schema
class Route(BaseModel):
step: Literal["poem", "story", "joke"] = Field(
None, description="路由流程的下一步"
)
router = llm.with_structured_output(Route)
@task
def llm_call_1(input_: str):
"""写故事"""
result = llm.invoke(input_)
return result.content
@task
def llm_call_2(input_: str):
"""写笑话"""
result = llm.invoke(input_)
return result.content
@task
def llm_call_3(input_: str):
"""写诗歌"""
result = llm.invoke(input_)
return result.content
def llm_call_router(input_: str):
"""路由到对应节点"""
decision = router.invoke(
[
SystemMessage(content="根据用户请求,将输入路由到故事、笑话或诗歌。"),
HumanMessage(content=input_),
]
)
return decision.step
@entrypoint()
def router_workflow(input_: str):
next_step = llm_call_router(input_)
if next_step == "story":
llm_call = llm_call_1
elif next_step == "joke":
llm_call = llm_call_2
elif next_step == "poem":
llm_call = llm_call_3
return llm_call(input_).result()
# 调用
for step in router_workflow.stream("给我写一个关于猫的笑话", stream_mode="updates"):
print(step)
print("\n")
调度器-工作器模式
在调度器-工作器架构中:
-
调度器:将任务拆分为子任务 → 分配给工作器 → 合并输出得到最终结果
-
工作器:执行具体子任务
该模式比并行执行更灵活,常用于子任务无法预先定义的场景,如编写代码、批量更新多文档内容。
Graph API
from typing import Annotated, List
import operator
# 规划用结构化输出 schema
class Section(BaseModel):
name: str = Field(description="报告章节名称")
description: str = Field(
description="本章主要内容与概念的简要概述"
)
class Sections(BaseModel):
sections: List[Section] = Field(description="报告章节列表")
planner = llm.with_structured_output(Sections)
Functional API
from typing import List
# 规划用结构化输出 schema
class Section(BaseModel):
name: str = Field(description="报告章节名称")
description: str = Field(
description="本章主要内容与概念的简要概述"
)
class Sections(BaseModel):
sections: List[Section] = Field(description="报告章节列表")
planner = llm.with_structured_output(Sections)
@task
def orchestrator(topic: str):
"""调度器:生成报告计划"""
report_sections = planner.invoke(
[
SystemMessage(content="生成一份报告大纲。"),
HumanMessage(content=f"报告主题:{topic}"),
]
)
return report_sections.sections
@task
def llm_call(section: Section):
"""工作器:撰写报告章节"""
result = llm.invoke(
[
SystemMessage(content="撰写报告章节。"),
HumanMessage(
content=f"章节名称:{section.name},章节描述:{section.description}"
),
]
)
return result.content
@task
def synthesizer(completed_sections: list[str]):
"""合成完整报告"""
final_report = "\n\n---\n\n".join(completed_sections)
return final_report
@entrypoint()
def orchestrator_worker(topic: str):
sections = orchestrator(topic).result()
section_futures = [llm_call(section) for section in sections]
final_report = synthesizer(
[section_fut.result() for section_fut in section_futures]
).result()
return final_report
# 调用
report = orchestrator_worker.invoke("生成一份关于大模型缩放定律的报告")
from IPython.display import Markdown
Markdown(report)
在 LangGraph 中创建工作器
LangGraph 内置支持调度器-工作器模式。Send API 可动态创建工作器节点并分发专属输入。
每个工作器拥有独立状态,所有输出写入共享状态键,供调度器读取与合并。
from langgraph.types import Send
# 图状态
class State(TypedDict):
topic: str # 报告主题
sections: list[Section] # 报告章节列表
completed_sections: Annotated[list, operator.add] # 并行写入
final_report: str # 最终报告
# 工作器状态
class WorkerState(TypedDict):
section: Section
completed_sections: Annotated[list, operator.add]
# 节点
def orchestrator(state: State):
"""调度器:生成报告计划"""
report_sections = planner.invoke(
[
SystemMessage(content="生成一份报告大纲。"),
HumanMessage(content=f"报告主题:{state['topic']}"),
]
)
return {"sections": report_sections.sections}
def llm_call(state: WorkerState):
"""工作器:撰写报告章节"""
section = llm.invoke(
[
SystemMessage(
content="按名称与描述撰写报告章节,使用 Markdown 格式,不要前言。"
),
HumanMessage(
content=f"章节名称:{state['section'].name},章节描述:{state['section'].description}"
),
]
)
return {"completed_sections": [section.content]}
def synthesizer(state: State):
"""合成完整报告"""
completed_sections = state["completed_sections"]
completed_report_sections = "\n\n---\n\n".join(completed_sections)
return {"final_report": completed_report_sections}
def assign_workers(state: State):
"""为每个章节分配工作器"""
return [Send("llm_call", {"section": s}) for s in state["sections"]]
# 构建工作流
orchestrator_worker_builder = StateGraph(State)
orchestrator_worker_builder.add_node("orchestrator", orchestrator)
orchestrator_worker_builder.add_node("llm_call", llm_call)
orchestrator_worker_builder.add_node("synthesizer", synthesizer)
orchestrator_worker_builder.add_edge(START, "orchestrator")
orchestrator_worker_builder.add_conditional_edges(
"orchestrator",
assign_workers,
["llm_call"]
)
orchestrator_worker_builder.add_edge("llm_call", "synthesizer")
orchestrator_worker_builder.add_edge("synthesizer", END)
orchestrator_worker = orchestrator_worker_builder.compile()
# 展示流程图
display(Image(orchestrator_worker.get_graph().draw_mermaid_png()))
# 调用
state = orchestrator_worker.invoke({"topic": "生成一份关于大模型缩放定律的报告"})
from IPython.display import Markdown
Markdown(state["final_report"])
评估器-优化器
在评估器-优化器工作流中:
-
一个大模型生成回答
-
另一个大模型评估回答
-
若评估器或人工介入认为需要优化,则给出反馈并重新生成
-
循环直到生成满意结果
适用于有明确成功标准但需要迭代优化的任务,如翻译、文案润色等。
Graph API
# 图状态
class State(TypedDict):
joke: str
topic: str
feedback: str
funny_or_not: str
# 评估用结构化输出 schema
class Feedback(BaseModel):
grade: Literal["funny", "not funny"] = Field(
description="判断笑话是否好笑"
)
feedback: str = Field(
description="如果不好笑,提供改进建议"
)
evaluator = llm.with_structured_output(Feedback)
# 节点
def llm_call_generator(state: State):
"""生成笑话"""
if state.get("feedback"):
msg = llm.invoke(
f"写一个关于{state['topic']}的笑话,并参考反馈:{state['feedback']}"
)
else:
msg = llm.invoke(f"写一个关于{state['topic']}的笑话")
return {"joke": msg.content}
def llm_call_evaluator(state: State):
"""评估笑话"""
grade = evaluator.invoke(f"评价这个笑话:{state['joke']}")
return {"funny_or_not": grade.grade, "feedback": grade.feedback}
def route_joke(state: State):
"""根据评估结果路由:接受或重新生成"""
if state["funny_or_not"] == "funny":
return "Accepted"
elif state["funny_or_not"] == "not funny":
return "Rejected + Feedback"
# 构建优化工作流
optimizer_builder = StateGraph(State)
optimizer_builder.add_node("llm_call_generator", llm_call_generator)
optimizer_builder.add_node("llm_call_evaluator", llm_call_evaluator)
optimizer_builder.add_edge(START, "llm_call_generator")
optimizer_builder.add_edge("llm_call_generator", "llm_call_evaluator")
optimizer_builder.add_conditional_edges(
"llm_call_evaluator",
route_joke,
{
"Accepted": END,
"Rejected + Feedback": "llm_call_generator",
},
)
optimizer_workflow = optimizer_builder.compile()
# 展示流程图
display(Image(optimizer_workflow.get_graph().draw_mermaid_png()))
# 调用
state = optimizer_workflow.invoke({"topic": "Cats"})
print(state["joke"])
Functional API
# 评估用结构化输出 schema
class Feedback(BaseModel):
grade: Literal["funny", "not funny"] = Field(
description="判断笑话是否好笑"
)
feedback: str = Field(
description="如果不好笑,提供改进建议"
)
evaluator = llm.with_structured_output(Feedback)
@task
def llm_call_generator(topic: str, feedback: Feedback):
"""生成笑话"""
if feedback:
msg = llm.invoke(
f"写一个关于{topic}的笑话,并参考反馈:{feedback}"
)
else:
msg = llm.invoke(f"写一个关于{topic}的笑话")
return msg.content
@task
def llm_call_evaluator(joke: str):
"""评估笑话"""
return evaluator.invoke(f"评价这个笑话:{joke}")
@entrypoint()
def optimizer_workflow(topic: str):
feedback = None
while True:
joke = llm_call_generator(topic, feedback).result()
feedback = llm_call_evaluator(joke).result()
if feedback.grade == "funny":
break
return joke
# 调用
for step in optimizer_workflow.stream("Cats", stream_mode="updates"):
print(step)
print("\n")
智能体
智能体通常由大模型 + 工具实现,运行在持续反馈循环中,适用于问题与解法不可预知的场景。
智能体比工作流更自主,可自主决定使用哪些工具、如何解决问题,你仍可定义可用工具集与行为规范。
# 使用工具
from langchain.tools import tool
# 定义工具
@tool
def multiply(a: int, b: int) -> int:
"""乘法计算 a * b
参数:
a:第一个整数
b:第二个整数
"""
return a * b
@tool
def add(a: int, b: int) -> int:
"""加法计算 a + b
参数:
a:第一个整数
b:第二个整数
"""
return a + b
@tool
def divide(a: int, b: int) -> float:
"""除法计算 a / b
参数:
a:第一个整数
b:第二个整数
"""
return a / b
# 绑定工具
tools = [add, multiply, divide]
tools_by_name = {tool.name: tool for tool in tools}
llm_with_tools = llm.bind_tools(tools)
Graph API
from langgraph.graph import MessagesState
from langchain.messages import SystemMessage, HumanMessage, ToolMessage
# 节点
def llm_call(state: MessagesState):
"""大模型决定是否调用工具"""
return {
"messages": [
llm_with_tools.invoke(
[SystemMessage(content="你是一个执行算术运算的助手")]
+ state["messages"]
)
]
}
def tool_node(state: dict):
"""执行工具调用"""
result = []
for tool_call in state["messages"][-1].tool_calls:
tool = tools_by_name[tool_call["name"]]
observation = tool.invoke(tool_call["args"])
result.append(ToolMessage(content=observation, tool_call_id=tool_call["id"]))
return {"messages": result}
def should_continue(state: MessagesState) -> Literal["tool_node", END]:
"""判断是否继续循环:是否有工具调用"""
messages = state["messages"]
last_message = messages[-1]
if last_message.tool_calls:
return "tool_node"
return END
# 构建智能体
agent_builder = StateGraph(MessagesState)
agent_builder.add_node("llm_call", llm_call)
agent_builder.add_node("tool_node", tool_node)
agent_builder.add_edge(START, "llm_call")
agent_builder.add_conditional_edges(
"llm_call",
should_continue,
["tool_node", END]
)
agent_builder.add_edge("tool_node", "llm_call")
agent = agent_builder.compile()
# 展示流程图
display(Image(agent.get_graph(xray=True).draw_mermaid_png()))
# 调用
messages = [HumanMessage(content="3加4等于多少?")]
messages = agent.invoke({"messages": messages})
for m in messages["messages"]:
m.pretty_print()
Functional API
from langgraph.graph import add_messages
from langchain.messages import (
SystemMessage, HumanMessage, ToolCall
)
from langchain_core.messages import BaseMessage
@task
def call_llm(messages: list[BaseMessage]):
"""大模型决定是否调用工具"""
return llm_with_tools.invoke(
[SystemMessage(content="你是一个执行算术运算的助手")]
+ messages
)
@task
def call_tool(tool_call: ToolCall):
"""执行工具调用"""
tool = tools_by_name[tool_call["name"]]
return tool.invoke(tool_call)
@entrypoint()
def agent(messages: list[BaseMessage]):
llm_response = call_llm(messages).result()
while True:
if not llm_response.tool_calls:
break
# 执行工具
tool_result_futures = [
call_tool(tool_call) for tool_call in llm_response.tool_calls
]
tool_results = [fut.result() for fut in tool_result_futures]
messages = add_messages(messages, [llm_response, *tool_results])
llm_response = call_llm(messages).result()
messages = add_messages(messages, llm_response)
return messages
# 调用
messages = [HumanMessage(content="3加4等于多少?")]
for chunk in agent.stream(messages, stream_mode="updates"):
print(chunk)
print("\n")
更多推荐


所有评论(0)