最近我和一个律师亲戚聊AI时,问了我应该怎么对现在律师事务所庞大的文档做AI检索,从技术上讲用现在的LLM+RAG可以满足需求,但细想不太对劲,因为这里面涉及到很多专业知识,还有律师的专有思维路径,一个不懂律师业务的程序员肯定是做不好的,于是有幸跟他们合伙人进行了深入沟通,合伙人说了一堆但我总结下来就这么一句话

“一个能回答我们所有文档相关问题的工具”。

比如:1)描述法庭上发生的事件,2)提供某个案件的最新进展,3)列出案件的时间线。

要知道,这可是家律师事务所,工具得处理海量的客户机密信息、法律诉讼资料等等,所以隐私和(尤其是)hallucinations(幻觉)是两个大难题。他们最初的想法是把所有数据塞进ChatGPT然后问问题,但这显然不行,因为完全没法解决隐私和准确性的问题。这个项目几周前交给我,我觉得自己做出来的东西还不错,成本也不高。这是一个RAG系统,能把扫描的法律文件分块、嵌入到本地的FAISS索引中,在查询时做最近邻检索,把排名靠前的、带引用的上下文喂给Claude,生成事实准确、带来源的答案,而且所有数据从没离开过事务所的网络。

我想分享一下这个经验,给你点灵感,如果你也在搞类似的项目,希望能帮到你。

为什么不直接使用LLM

把事务所的整个文档库直接丢进像ChatGPT/Deepseek这样的现成LLM显然很糟糕。主要问题有:

保密性:文档库里有密封证据、客户ID、医疗记录和特权策略备忘录。把这些推送到外部API会违反NDA,在我们国家还可能被制裁(同事告诉我的)。本地微调模型会安全点,但也得有严格的加密存储保障。通用云LLM啥都保证不了。

Hallucinations(幻觉):LLM是概率序列生成器,生成的是“看起来对”的文本,不是“真对”的文本。在法庭上,一个捏造的引用可能毁掉一个案子。我们需要事实准确、带逐行出处的答案,基础模型没检索层和引用检查压根做不到。

Token限制:我们的语料库大概1TB,OCR和预处理后分成约100万个chunk。即使是“扩展上下文”的模型,也最多支持200k token——大概10份中等长度的诉状。直接用LLM要么得超级粗糙地总结,要么随机采样,必然漏掉关键事实。

输入杂乱:大部分证据是扫描的TIFF文件,邮件多是西班牙语或法语的法律术语。现成的LLM在干净网页文本上训练,面对OCR噪声和专业术语会翻车。得有预处理、双语嵌入和逐chunk的质量评分。

延迟:把兆字节的上下文塞进LLM,推理时间得飙到几秒,账单也可能几美元一次。本地向量搜索+针对性生成能把p95延迟控制在120ms左右,Claude的成本压到每次$0.02以下。

可审计性:每个答案都得在几个月后还能重现。原始LLM输出会随模型更新和temperature变化而漂移;带冻结嵌入和版本固定的prompt的RAG管道能提供可靠的审计追踪。

总结:普通LLM适合头脑风暴,但在律所的生产环境中,合规性差、成本高。我们需要带硬性隐私保证、确定性引用逻辑和低延迟的RAG系统,所以有了下面的架构。

系统架构

文档摄入

一个watcher脚本监控安全网络共享,记录每个新文件到一个只追加日志。对于每个文件d_i,我们计算:

sha256(d_i)  →  主键

同时捕获元数据(case_id, MIME, timestamp)。先存哈希能去重,避免重复OCR,还能提供不依赖文件名的审计追踪。

OCR与解析

根据MIME类型分流:

  • • 有文本层的PDF,用pdfplumber逐页提取。
  • • 扫描件/TIFF/PNG,用Tesseract的–psm 4“稀疏文本”模型,带自定义语言白名单[eng,spa,fre]。

每个页面返回纯UTF-8文本+边界框JSON;JSON不离开内网,但支持后续高亮渲染,保护隐私。

文本分块

页面用滑动窗口切分:

window_size = 1_024   # 字节overlap     = 0.10    # 10%

每个chunk c_j生成一条记录:

{  "doc_id": sha256(d_i),  "page":   p,  "offset": byte_start,  "text":   <1024-byte string>}

为什么用字节而非token?字节窗口“lexer无关”,更灵活,OCR噪声不会让chunk数量爆炸。实际平均每页约8个chunk。

嵌入

用在英/西/法语法律语句上微调的‘tri-lingual’ MiniLM(all-MiniLM-L6-v2)生成嵌入:

e = φ(text)  ∈  ℝ^n        # n是向量长度e ← e / ||e||₂             # 单位归一化,cosine = dot

向量长度得让索引够小,n = 350是个好选择;100万个chunk占约2.7GB RAM,保留>0.86的平均cosine相似度。

向量数据库

嵌入存到FAISS IVF-PQ索引:

nlist        = 256     # 粗聚类中心pq_m         = 8       # 子向量pq_bits      = 10      # 每子向量位数nprobe       = 8       # 每次查询探查的列表

这配置在单GPU上中位召回时间约18ms,RAM占用大幅减少。

k-NN搜索

对查询q,嵌入一次(e_q),执行:

S_k(q) = topk_cosine(e_q, k = 40)

丢弃相似度<0.20的候选,低于这个阈值答案质量会变差。若S_k为空,直接返回“无匹配证据”,省下Claude调用费用。

重新排序

用INT8量化的cross-encoder(mxbai-reranker-base)对S_k中的(q, c)对评分:

score = σ(W · BERT(q, c) + b)

保留前10个最高分。量化大幅降低CPU推理时间。

提示构建

用严格模板拼接10个chunk:

<SYSTEM>You are an expert paralegal...</SYSTEM><CONTEXT>[doc:a5f9…:p12]  …chunk text…[doc:c1b3…:p 3]  …chunk text……</CONTEXT><USER> {original question} </USER>

提示大小控制在15kB以下,留出512 token的回答空间,避开Claude 32k上下文上限。

LLM调用

用temperature=0.0(完全确定性)和max_tokens=512调用Claude-3-Opus。按当前定价和平均上下文长度,每次调用约$0.018,耗时约90ms。

引用检查

生成后进行两项检查:

  • Regex:每句必须以"[doc:page]"结尾。
  • 编辑距离:每个引用的Levenshtein(sentence, cited_chunk) ≤ 10,防止paraphrase幻觉。

若任一检查失败,返回“Insufficient context”。通过则带引用交付答案。所有原始文本留在隔离VLAN,输出可追溯到磁盘上的chunk。

组件详解与设计选择

文档摄入与去重

每个文件进入“new-evidence”共享后通过watcher脚本处理:

    1. 计算原始字节的sha256哈希作为主键,避免文件名变化影响。
    1. 捕获不可变元数据,存到只追加的SQLite日志。
    1. 去重:若哈希已存在,跳过OCR,节省时间。
    1. 队列文件给下游OCR/解析。

日志状态是语料库字节内容的确定性函数,方便后续审计。

OCR与解析

新文件交给OCR工作池,按MIME快速分流。页面对象包含:

{  "pk":        <sha256>,  "page_no":   17,  "mime":      "application/pdf",  "text":      "...plain UTF-8...",  "bbox_json": [...],  "lang":      "spa",  "ocr_conf":  0.93}

保留bbox_json方便UI高亮引用行。若ocr_conf<0.60,标记页面需人工QA,跳过嵌入,减少垃圾token。

文本分块与窗口几何

页面文本切成固定大小、带重叠的窗口:

WINDOW_BYTES = 1_024OVERLAP_PCT  = 0.10for each page_text:    i = 0    while i < len(page_text):        chunk = page_text[i : i + WINDOW_BYTES]        emit({            "doc_id": sha256(file_bytes),            "page":   page_number,            "offset": i,            "text":   chunk        })        i += int(WINDOW_BYTES * (1 - OVERLAP_PCT))

用字节窗口避免OCR噪声导致chunk数量不稳定。1024B大小能装两段文本,适合“接下来发生了什么”类问题。

嵌入

用微调的MiniLM编码器处理chunk,生成n=350维向量,归一化后cosine相似度即点积。100万个chunk占2.7GB RAM,保持>0.86的cosine相似度。

向量索引

嵌入存到FAISS IVF-PQ索引,配置如上。相比平坦索引,IVF-PQ内存占用从11GB降到2.7GB,查询时间从70ms降到<20ms,冷启动<3s。

k-NN检索

查询嵌入后,取top 40相似chunk,丢弃相似度<0.20的,减少噪声。FAISS单GPU流处理,p95延迟<30ms。

重新排序

40个候选用INT8 cross-encoder重新评分,保留top 10,约10kB,适合Claude 32k上下文。

提示构建

用固定模板拼接:

SYSTEM_MSG = (    "You are an expert paralegal. "    "Answer strictly from the context and cite every factual claim "    "as [doc_id:page]. If the context is insufficient, reply "    "\"Insufficient grounded context.\"")

前置guardrails和chunk前缀引用降低幻觉,便于regex检查。

LLM调用

用Claude-3-Opus,temperature=0.0,max_tokens=512,确保确定性和审计可追溯。每次调用约$0.018,90ms。

引用检查

两项快速检查:

CITE_RE = re.compile(r"\[[0-9a-f]{6}:\d+\]$")LEV_THR = 10
  • • 每句需以"[abcdef:42]"结尾。
  • • 每个引用句与chunk的Levenshtein距离≤10。

失败返回“Insufficient context”,宁缺勿滥。

性能与成本

整个管道在16GB RAM下几乎瞬时。向量搜索18ms,cross-encoder 85ms,Claude调用90ms,引用检查<5ms。端到端p95延迟<200ms,每次查询约,50预算可支持2500次查询。

总结

我不是NLP专家,这套方案是我边查资料边试出来的。结果很快、很便宜,还没泄露过任何机密或捏造引用,我挺满意的。如果你有更好的方法,欢迎分享!希望这篇文章对你有用。

感谢阅读,牛马继续干活啦!

想入门 AI 大模型却找不到清晰方向?备考大厂 AI 岗还在四处搜集零散资料?别再浪费时间啦!2025 年 AI 大模型全套学习资料已整理完毕,从学习路线到面试真题,从工具教程到行业报告,一站式覆盖你的所有需求,现在全部免费分享

👇👇扫码免费领取全部内容👇👇

一、学习必备:100+本大模型电子书+26 份行业报告 + 600+ 套技术PPT,帮你看透 AI 趋势

想了解大模型的行业动态、商业落地案例?大模型电子书?这份资料帮你站在 “行业高度” 学 AI

1. 100+本大模型方向电子书

2. 26 份行业研究报告:覆盖多领域实践与趋势

报告包含阿里、DeepSeek 等权威机构发布的核心内容,涵盖:

  • 职业趋势:《AI + 职业趋势报告》《中国 AI 人才粮仓模型解析》;
  • 商业落地:《生成式 AI 商业落地白皮书》《AI Agent 应用落地技术白皮书》;
  • 领域细分:《AGI 在金融领域的应用报告》《AI GC 实践案例集》;
  • 行业监测:《2024 年中国大模型季度监测报告》《2025 年中国技术市场发展趋势》。
3. 600+套技术大会 PPT:听行业大咖讲实战

PPT 整理自 2024-2025 年热门技术大会,包含百度、腾讯、字节等企业的一线实践:

  • 安全方向:《端侧大模型的安全建设》《大模型驱动安全升级(腾讯代码安全实践)》;
  • 产品与创新:《大模型产品如何创新与创收》《AI 时代的新范式:构建 AI 产品》;
  • 多模态与 Agent:《Step-Video 开源模型(视频生成进展)》《Agentic RAG 的现在与未来》;
  • 工程落地:《从原型到生产:AgentOps 加速字节 AI 应用落地》《智能代码助手 CodeFuse 的架构设计》。

二、求职必看:大厂 AI 岗面试 “弹药库”,300 + 真题 + 107 道面经直接抱走

想冲字节、腾讯、阿里、蔚来等大厂 AI 岗?这份面试资料帮你提前 “押题”,拒绝临场慌!

1. 107 道大厂面经:覆盖 Prompt、RAG、大模型应用工程师等热门岗位

面经整理自 2021-2025 年真实面试场景,包含 TPlink、字节、腾讯、蔚来、虾皮、中兴、科大讯飞、京东等企业的高频考题,每道题都附带思路解析

2. 102 道 AI 大模型真题:直击大模型核心考点

针对大模型专属考题,从概念到实践全面覆盖,帮你理清底层逻辑:

3. 97 道 LLMs 真题:聚焦大型语言模型高频问题

专门拆解 LLMs 的核心痛点与解决方案,比如让很多人头疼的 “复读机问题”:

三、路线必明: AI 大模型学习路线图,1 张图理清核心内容

刚接触 AI 大模型,不知道该从哪学起?这份「AI大模型 学习路线图」直接帮你划重点,不用再盲目摸索!

路线图涵盖 5 大核心板块,从基础到进阶层层递进:一步步带你从入门到进阶,从理论到实战。

L1阶段:启航篇丨极速破界AI新时代

L1阶段:了解大模型的基础知识,以及大模型在各个行业的应用和分析,学习理解大模型的核心原理、关键技术以及大模型应用场景。

L2阶段:攻坚篇丨RAG开发实战工坊

L2阶段:AI大模型RAG应用开发工程,主要学习RAG检索增强生成:包括Naive RAG、Advanced-RAG以及RAG性能评估,还有GraphRAG在内的多个RAG热门项目的分析。

L3阶段:跃迁篇丨Agent智能体架构设计

L3阶段:大模型Agent应用架构进阶实现,主要学习LangChain、 LIamaIndex框架,也会学习到AutoGPT、 MetaGPT等多Agent系统,打造Agent智能体。

L4阶段:精进篇丨模型微调与私有化部署

L4阶段:大模型的微调和私有化部署,更加深入的探讨Transformer架构,学习大模型的微调技术,利用DeepSpeed、Lamam Factory等工具快速进行模型微调,并通过Ollama、vLLM等推理部署框架,实现模型的快速部署。

L5阶段:专题集丨特训篇 【录播课】

四、资料领取:全套内容免费抱走,学 AI 不用再找第二份

不管你是 0 基础想入门 AI 大模型,还是有基础想冲刺大厂、了解行业趋势,这份资料都能满足你!
现在只需按照提示操作,就能免费领取:

👇👇扫码免费领取全部内容👇👇

2025 年想抓住 AI 大模型的风口?别犹豫,这份免费资料就是你的 “起跑线”!

Logo

有“AI”的1024 = 2048,欢迎大家加入2048 AI社区

更多推荐