系列篇章💥

No. 文章
1 【AI大模型前沿】深度剖析瑞智病理大模型 RuiPath:如何革新癌症病理诊断技术
2 【AI大模型前沿】清华大学 CLAMP-3:多模态技术引领音乐检索新潮流
3 【AI大模型前沿】浙大携手阿里推出HealthGPT:医学视觉语言大模型助力智能医疗新突破
4 【AI大模型前沿】阿里 QwQ-32B:320 亿参数推理大模型,性能比肩 DeepSeek-R1,免费开源
5 【AI大模型前沿】TRELLIS:微软、清华、中科大联合推出的高质量3D生成模型
6 【AI大模型前沿】Migician:清华、北大、华科联手打造的多图像定位大模型,一键解决安防监控与自动驾驶难题
7 【AI大模型前沿】DeepSeek-V3-0324:AI 模型的全面升级与技术突破
8 【AI大模型前沿】BioMedGPT-R1:清华联合水木分子打造的多模态生物医药大模型,开启智能研发新纪元
9 【AI大模型前沿】DiffRhythm:西北工业大学打造的10秒铸就完整歌曲的AI歌曲生成模型
10 【AI大模型前沿】R1-Omni:阿里开源全模态情感识别与强化学习的创新结合
11 【AI大模型前沿】Qwen2.5-Omni:阿里巴巴的多模态大模型,实现看、听、说、写一体化
12 【AI大模型前沿】SmolDocling:256M参数的轻量级多模态文档处理利器,10分钟搞定百页PDF
13 【AI大模型前沿】Stable Virtual Camera:Stability AI 推出的2D图像转3D视频模型,一键生成沉浸式视频
14 【AI大模型前沿】阿里 Qwen3 震撼开源,模型新王诞生,开启全球大模型新纪元
15 【AI大模型前沿】InternVL:OpenGVLab开源多模态大模型,解锁视觉问答与多语言翻译的全能应用图鉴
16 【AI大模型前沿】Fin-R1:上海财经大学联合财跃星辰推出的金融推理大模型,凭7B参数拿下评测第二,离行业第一仅差3分
17 【AI大模型前沿】Med-R1:基于强化学习的医疗视觉语言模型,突破跨模态医学推理的普适性
18 【AI大模型前沿】Baichuan-M1-14B:百川智能推出专为医疗优化的开源大语言模型
19 【AI大模型前沿】一键生成宫崎骏动画风,EasyControl Ghibli 让照片秒变吉卜力艺术品
20 【AI大模型前沿】TxGemma:谷歌推出的高效药物研发大模型,临床试验预测准确率超90%
21 【AI大模型前沿】F5R-TTS:腾讯推出TTS领域的新王者,又快又准又自然,零样本语音克隆新高度
22 【AI大模型前沿】MiniMind-V:低成本打造超小多模态视觉语言模型(仅需1.3元人民币和1小时)
23 【AI大模型前沿】MoCha:端到端对话角色视频生成模型、电影级对话角色合成黑科技、重新定义动画创作
24 【AI大模型前沿】HuatuoGPT-o1-7B:中英文双语医学推理,打破语言障碍的AI大模型
25 【AI大模型前沿】MedReason:大规模医学推理数据集、借用知识图谱将大模型打造成“医术”专家
26 【AI大模型前沿】SkyReels-V2:昆仑万维开源的无限时长电影生成模型,开启视频生成新纪元
27 【AI大模型前沿】Dia:Nari Labs开源16亿参数TTS模型,只需文本输入,生成媲美真人对话的语音
28 【AI大模型前沿】阿里巴巴开源LHM:单图生成可动画3D人体模型,开启3D建模新纪元
29 【AI大模型前沿】TinyLLaVA-Video-R1:北航开源视频推理模型、小尺寸大智慧、参数少一半,性能翻一番
30 【AI大模型前沿】TTRL:测试时强化学习,开启无标签数据推理新篇章
31 【AI大模型前沿】Aero-1-Audio:Qwen2.5架构加持,轻量级音频模型天花板、吊打Whisper
32 【AI大模型前沿】DianJin-R1:阿里云通义点金联合苏大推出的金融推理增强大模型
33 【AI大模型前沿】VITA-Audio:腾讯开源的高效语音交互多模态大语言模型
34 【AI大模型前沿】Multiverse:全球首个AI多人游戏世界模型,低成本高效率新突破
35 【AI大模型前沿】Seed1.5-VL:多模态理解的效率革新者,以小博大,性能惊艳
36 【AI大模型前沿】ViLAMP:蚂蚁集团和人民大学联手打造的长视频理解利器,单卡处理3小时视频
37 【AI大模型前沿】Muyan-TTS:开源零样本语音合成模型、0.33秒极速生成播客级语音、小白也能玩转AI配音
38 【AI大模型前沿】Dolphin:字节跳动开源文档解析大模型,轻量级、高效、多格式,开启文档处理新时代
39 【AI大模型前沿】ChatTS:字节跳动联合清华大学开源、多模态时序大模型助力时序数据对话与推理
40 【AI大模型前沿】Index-AniSora:B站开源的动漫视频生成模型,助力高效创作
41 【AI大模型前沿】RelightVid:上海 AI Lab联合复旦等高校推出的视频重照明模型
42 【AI大模型前沿】BAGEL:字节跳动开源、多模态大模型的创新突破与实践指南
43 【AI大模型前沿】Matrix-Game:昆仑万维开源大模型,一键生成你的专属虚拟世界
44 【AI大模型前沿】Pixel Reasoner:滑铁卢联合港科大等高校推出的视觉语言模型,助力视觉推理新突破
45 【AI大模型前沿】CoGenAV:多模态语音表征新范式、通义联合深技大打造、噪声环境WER降低70%+
46 【AI大模型前沿】Ming-Lite-Omni:蚂蚁集团开源的统一多模态大模型的创新实践
47 【AI大模型前沿】DeepEyes:小红书与西安交大联合打造的多模态深度思考模型
48 【AI大模型前沿】OmniAudio:阿里通义实验室的空间音频生成模型,开启沉浸式体验新时代
49 【AI大模型前沿】MiniCPM 4.0:面壁智能开源的极致高效端侧大模型(小版本、低消耗、220倍极致提速)
50 【AI大模型前沿】SmolVLA:Hugging Face开源的轻量级视觉-语言-行动机器人模型
51 【AI大模型前沿】Time-R1:伊利诺伊大学香槟分校开源的时间推理语言模型、实现过去→未来全链路推演
52 【AI大模型前沿】MonkeyOCR:基于结构-识别-关系三元组范式的文档解析模型
53 【AI大模型前沿】GLM-4.5:智谱打造的开源SOTA模型,推理、代码与智能体能力融合先锋
54 【AI大模型前沿】百度飞桨PaddleOCR 3.0开源发布,支持多语言、手写体识别,赋能智能文档处理
55 【AI大模型前沿】Stream-Omni:多模态交互的“黄金三角”——视觉、语音、文本的完美融合
56 【AI大模型前沿】Vui:Fluxions-AI开源的轻量级语音对话模型,开启自然语音交互新时代
57 【AI大模型前沿】腾讯AI Lab开源的SongGeneration:音乐生成大模型的技术探索与实践
58 【AI大模型前沿】Osmosis-Structure-0.6B:小型语言模型在结构化信息提取中的突破
59 【AI大模型前沿】Kwai Keye-VL:颠覆认知!国产多模态大模型突然发布,视频理解能力堪比人类
60 【AI大模型前沿】Nanonets-OCR-s:从学术论文到法律合同,智能识别公式、签名、表格与图像
61 【AI大模型前沿】OmniAvatar:浙大联合阿里打造的音频驱动全身视频生成模型
62 【AI大模型前沿】DAMO GRAPE:阿里达摩院与浙江肿瘤医院联合打造的早期胃癌识别AI模型
63 【AI大模型前沿】阿里开源Lingshu:一个模型搞定12种医学影像诊断
64 【AI大模型前沿】原石科技MetaStone-S1:突破性反思型生成式大模型的技术解析与实践指南
65 【AI大模型前沿】清华实验室开源MOSS-TTSD:口语对话语音生成的突破
66 【AI大模型前沿】昆仑万维开源Skywork-R1V3:38B多模态推理模型,高考数学142分刷新开源SOTA
67 【AI大模型前沿】Voxtral:Mistral AI开源的高性价比语音转录与理解模型
68 【AI大模型前沿】Goedel-Prover-V2:普林斯顿联合清华开源的定理证明模型,AI数学研究新里程碑
69 【AI大模型前沿】Seed-X:字节跳动开源的7B参数多语言翻译模型,挑战超大型模型性能
70 【AI大模型前沿】OpenReasoning-Nemotron:英伟达开源的推理利器,助力数学、科学与代码任务
71 【AI大模型前沿】阿里通义千问 Qwen3-Coder:开启智能代码生成与代理式编程新时代
72 【AI大模型前沿】Qwen3-SmVL:基于阿里通义千问3和SmolVLM拼接打造1 GB显存可跑的中文超小多模态大模型
73 【AI大模型前沿】通义万相Wan2.2:阿里270亿参数巨兽开源,消费级显卡就能跑,免费平替Sora上线
74 【AI大模型前沿】Higgs Audio V2杀疯:Boson AI开源语音大模型(克隆声音、同步BGM、低延迟对话一键搞定)
75 【AI大模型前沿】腾讯混元3D世界生成模型HunyuanWorld-1.0:开启沉浸式3D内容创作新纪元
76 【AI大模型前沿】Intern-S1:上海AI Lab打造的科学多模态大模型,助力科研智能化
77 【AI大模型前沿】腾讯混元Dense模型:从智能座舱到客服机器人,用0.5B参数打穿全场景
78 【AI大模型前沿】Qwen-Image:免费开源、写段文案→直接出图→还能继续精修,全程不用PS
79 【AI大模型前沿】小米开源MiDashengLM:语音、音乐、环境声一网打尽、智能座舱直接起飞
80 【AI大模型前沿】InternVL3.5:上海 AI Lab 开源多模态大模型、荣登多模态开源榜首
81 【AI大模型前沿】Qwen3-Max-Preview:阿里通义千问的万亿参数大模型,开启AI新纪元
82 【AI大模型前沿】dots.vlm1:小红书hi lab开源的高性能多模态大模型、免费可商用,图表推理直接封神
83 【AI大模型前沿】GLM-4.5V:智谱最新一代视觉推理模型,开源即巅峰,42项SOTA碾压全场,多模态一键秒杀
84 【AI大模型前沿】Jan-v1:基于阿里云Qwen3-4B-Thinking的高性能本地运行AI模型
85 【AI大模型前沿】KittenTTS:KittenML开源的轻量级文本转语音模型,离线部署与高效性能的完美结合
86 【AI大模型前沿】Baichuan-M2:百川智能开源医疗增强大模型,助力医疗智能化转型
87 【AI大模型前沿】MiroThinker:基于Qwen3构建的开源Agent模型系列,助力复杂任务解决
88 【AI大模型前沿】DINOv3:Meta开源的自监督视觉模型,卫星/医疗/自拍全通杀,性能吊打CLIP全家桶
89 【AI大模型前沿】VibeVoice:微软开源7B模型,跨语言、多说话人、长文本一次到位
90 【AI大模型前沿】Waver 1.0:字节跳动推出的AI视频生成模型,支持文本/图像到高清视频的创作
91 【AI大模型前沿】MobileCLIP2:苹果开发端侧大模型,让手机秒变AI神器、拍照就能写文案、搜图片零误差
92 【AI大模型前沿】MiniCPM-V 4.5:OpenBMB推出的高性能端侧多模态大模型
93 【AI大模型前沿】Step-Audio 2 mini:阶跃星辰开源的端到端语音大模型,听得清楚、想得明白、说得自然
94 【AI大模型前沿】HunyuanWorld-Voyager:腾讯开源的超长漫游世界模型,开启3D场景生成新纪元
95 【AI大模型前沿】EmbeddingGemma:谷歌开源的移动端优先文本嵌入模型,200MB 内存搞定 100 种语言 RAG,性能翻倍
96 【AI大模型前沿】Apertus:瑞士首个开源大模型,多语言支持,合规训练,高效性能
97 【AI大模型前沿】OneCAT:美团联合上交大推出的纯解码器多模态模型
98 【AI大模型前沿】MiniCPM4.1:面壁智能重磅开源,128K长文本推理秒级响应,端侧性能狂飙7倍
99 【AI大模型前沿】VoxCPM:OpenBMB 推出的无分词器 TTS 模型,实现上下文感知语音生成与逼真语音克隆
100 【AI大模型前沿】IBM Granite-Docling-258M:开源企业级文档 AI 模型的创新与应用
101 【AI大模型前沿】小红书开源FireRedTTS-2:突破性多说话人长对话语音生成系统完全解析
102 【AI大模型前沿】PP-OCRv5:百度飞桨的高效多语言文字识别利器,0.07 亿参数狂飙 370 字/秒,支持 40+ 语种
103 【AI大模型前沿】小米AI实验室发布ZipVoice系列语音合成模型,重塑语音交互体验
104 【AI大模型前沿】IndexTTS2:B站开源的零样本语音合成模型,实现情感与时长精准控制
105 【AI大模型前沿】Ling-V2:蚂蚁百灵团队打造的高效智能语言模型
106 【AI大模型前沿】腾讯ARC开源AudioStory:大语言模型驱动的长篇叙事音频生成技术
107 【AI大模型前沿】Mini-o3:字节跳动联合港大推出的开源视觉推理模型
108 【AI大模型前沿】InternVLA-N1:上海 AI Lab 开源的端到端双系统导航大模型
109 【AI大模型前沿】InternVLA-A1:上海AI实验室开源的具身操作大模型,助力机器人实现理解、想象与执行一体化
110 【AI大模型前沿】深度解析DeepSeek-R1-Safe:华为与浙大合作的安全大模型
111 【AI大模型前沿】小米开源语音大模型 Xiaomi-MiMo-Audio:开启语音领域的“LLaMA时刻”
112 【AI大模型前沿】百度Qianfan-VL:企业级多模态大模型的领域增强解决方案,OCR、数学、图表一把抓
113 【AI大模型前沿】Qwen3Guard:阿里云通义千问团队推出的安全防护模型
114 【AI大模型前沿】Qwen3-VL:阿里云通义千问的多模态视觉语言模型,开启智能交互新纪元
115 【AI大模型前沿】Qwen3-Omni:阿里巴巴通义千问团队引领全模态大模型新突破
116 【AI大模型前沿】Qwen3-TTS-Flash:阿里通义的多语言多音色语音合成利器
117 【AI大模型前沿】FLM-Audio:智源研究院开源的全双工音频对话大模型,开启自然流畅语音交互新时代
118 【AI大模型前沿】DeepSeek-V3.2-Exp:基于稀疏注意力机制的高效长文本处理大模型
119 【AI大模型前沿】智谱GLM-4.6:355B参数的旗舰级AI模型,代码能力与推理性能全面升级
120 【AI大模型前沿】Logics-Parsing:阿里巴巴开源的端到端文档解析模型
121 【AI大模型前沿】Ming-UniAudio:蚂蚁集团开源的多功能统一语音大模型
122 【AI大模型前沿】Ling-1T:蚂蚁集团开源万亿参数的高效推理非思考模型
123 【AI大模型前沿】微软UserLM-8b:AI助手的“逼真陪练”,多轮对话精炼利器
124 【AI大模型前沿】NeuTTS Air:Neuphonic打造的超拟真离线语音合成模型
125 【AI大模型前沿】Youtu-Embedding:腾讯优图开源的高性能通用文本表示模型
126 【AI大模型前沿】UniPixel:香港理工大学联合腾讯推出的像素级多模态大模型
127 【AI大模型前沿】SongBloom:腾讯AI Lab开源的全长度歌曲生成模型
128 【AI大模型前沿】SAIL-VL2:字节跳动开源的“小而强”视觉语言模型,2B参数也能吊打大模型
129 【AI大模型前沿】PaddleOCR-VL:百度0.9B超轻量级文档解析利器,多语言多模态功能强大
130 【AI大模型前沿】HunyuanWorld-Mirror:腾讯开源的多功能3D重建大模型
131 【AI大模型前沿】DeepSeek-OCR:开启OCR 2.0时代,用视觉压缩技术革新文档处理
132 【AI大模型前沿】FIBO:首个开源原生支持JSON的文本生成图像模型
133 【AI大模型前沿】SoulX-Podcast:多语言、多方言、多说话人的语音合成新突破
134 【AI大模型前沿】美团 LongCat-Flash-Omni:低延迟音视频交互的全模态大模型
135 【AI大模型前沿】Ouro:字节跳动Seed团队推出的循环语言模型,开启推理新纪元
136 【AI大模型前沿】UniWorld:基于强化学习的图像编辑大模型技术解析与应用探索
137 【AI大模型前沿】FG-CLIP:360推出的双语细粒度视觉语言对齐模型,助力多模态理解新突破
138 【AI大模型前沿】Maya1:Maya Research开源的语音合成模型,让AI声音充满情感
139 【AI大模型前沿】Step-Audio-EditX:全球首个开源LLM音频编辑大模型,开启音频创作新纪元
140 【AI大模型前沿】OmniVinci:NVIDIA全模态大模型,语音、图像、视频全搞定的六边形战士
141 【AI大模型前沿】Open-o3-Video:北大联合字节开源的时空推理视频模型
142 【AI大模型前沿】SenseNova-SI:商汤开源的空间智能大模型,性能超越GPT-5
143 【AI大模型前沿】ERNIE 4.5:百度文心大模型的多模态技术革新与应用实践
144 【AI大模型前沿】腾讯KaLM-Embedding:高性能多语言文本嵌入模型的创新与实践
145 【AI大模型前沿】Bee:腾讯混元与清华联合开源的全栈多模态大模型创新项目
146 【AI大模型前沿】InfinityStar:字节跳动推出的高效视频生成模型,开启视频创作新纪元
147 【AI大模型前沿】Meta SAM 3D:从单图到3D世界的神奇钥匙
148 【AI大模型前沿】Meta SAM 3:基于概念提示的图像与视频分割模型
149 【AI大模型前沿】腾讯 HunyuanVideo-1.5:用消费级显卡解锁高清视频生成的无限可能
150 【AI大模型前沿】Olmo 3:开源时代的 AI 定制先锋,打造专属智能模型
151 【AI大模型前沿】Fara-7B:微软打造的高效计算机操作代理模型,开启智能办公新时代
152 【AI大模型前沿】HunyuanOCR:腾讯混元推出的高效端到端OCR视觉语言模型
153 【AI大模型前沿】Z-Image:阿里通义的图像生成“魔法棒”,低资源设备也能玩转高清图像
154 【AI大模型前沿】Depth Anything 3:字节跳动推出的高效视觉空间重建模型
155 【AI大模型前沿】DeepSeek-Math-V2:数学推理的“智能助手”,从定理证明到竞赛夺冠
156 【AI大模型前沿】GLM-ASR:智谱开源的高性能语音识别模型
157 【AI大模型前沿】GLM-TTS:智谱AI打造的可控情感零样本文本转语音模型
158 【AI大模型前沿】GLM-4.6V:智谱多模态大模型的创新突破与应用实践
159 【AI大模型前沿】GLM-4.7:智谱AI的旗舰大模型,开启智能编程新时代
160 【AI大模型前沿】StepAudio R1:首个解锁音频推理能力的开源大模型
161 【AI大模型前沿】GELab-Zero:阶跃开源的4B端侧多模态GUI Agent模型,助力本地可控的移动设备智能化
162 【AI大模型前沿】Vidi2:由字节跳动开源的多模态视频理解与生成大模型
163 【AI大模型前沿】Mistral 3:欧洲开源力量的AI力作,多模态与高性能的完美融合
164 【AI大模型前沿】NewBie-image-Exp0.1:NewBieAI实验室打造的高效动漫图像生成模型
165 【AI大模型前沿】LongCat-Image:美团开源的高效图像生成与编辑模型
166 【AI大模型前沿】NVIDIA Nemotron 3:多智能体 AI 的高效推理引擎,开启智能协作新时代
167 【AI大模型前沿】LLaDA2.0:蚂蚁集团开源的100B扩散语言模型,高效推理与卓越性能
168 【AI大模型前沿】小米MiMo-V2-Flash:高效推理与智能体任务优化的开源大模型
169 【AI大模型前沿】Molmo 2:艾伦人工智能研究所开源的多模态视频理解模型
170 【AI大模型前沿】Meta SAM Audio:革新音频分离技术,开启多模态音频处理新时代
171 【AI大模型前沿】TRELLIS.2:微软开源的40亿参数图像转3D生成模型


前言

随着人工智能技术的飞速发展,3D生成领域迎来了新的突破。微软开源的TRELLIS.2模型以其高效的图像转3D能力,为3D内容创作带来了革命性的变化。本文将深入探讨TRELLIS.2的技术特点、应用场景以及部署实践。
在这里插入图片描述

一、项目概述

TRELLIS.2是一个由微软开发的开源图像转3D生成模型,拥有40亿参数。它能够将单张图片高效地转换为高保真的3D资产,支持从512³到1536³的多分辨率输出。该模型的核心创新在于其“场无关”的O-Voxel表示法,能够稳健地处理复杂拓扑结构,如开放表面、非流形几何和内部封闭结构。此外,TRELLIS.2还支持完整的PBR材质建模,生成的3D模型具有丰富的纹理细节和逼真的材质效果。

二、核心功能

(一)图像到3D生成

TRELLIS.2能够根据输入的图像快速生成高质量的3D模型,适用于从2D图像创建3D资产的场景。用户只需提供一张图片,模型即可在短时间内生成具有复杂拓扑和丰富纹理的3D模型,极大地简化了3D内容创作的流程。

(二)复杂拓扑处理

TRELLIS.2的O-Voxel表示法能够处理复杂的3D结构,包括开放表面、非流形几何和内部封闭结构。这种表示法突破了传统等值面场的限制,支持完整的PBR材质建模,确保生成的3D模型在几何和材质上都具有高保真度。

(三)材质与纹理生成

生成的3D模型支持多种材质属性,如基础颜色、粗糙度、金属度和不透明度等,能够实现照片级真实感渲染。TRELLIS.2不仅生成高质量的几何形状,还能生成与输入图像高度一致的纹理和材质。

(四)多分辨率支持

TRELLIS.2支持从512³到1536³等多种分辨率的3D模型生成。用户可以根据需求选择合适的分辨率,模型在高分辨率下依然能够保持高效的生成速度。

(五)快速渲染与导出

生成的3D模型可以直接用于渲染,并支持导出为GLB等标准3D文件格式。TRELLIS.2结合了CUDA加速的网格处理工具和高效的渲染技术,确保生成的3D模型不仅质量高,而且生成速度快。

三、技术揭秘

(一)O-Voxel表示法

O-Voxel是一种创新的“场无关”稀疏体素结构,它不仅定义了3D空间中的一个个小方块(体素),还为每个小方块精确地绑定了其表面属性和空间关系。O-Voxel的三大突破性设计包括:

  1. 场依赖的终结:直接、显式地在稀疏的体素网格中编码几何与外观,避免了等值面提取可能带来的拓扑限制和精度损失。
  2. 几何与外观的统一载体:每个激活的O-Voxel不仅包含其空间坐标,还内嵌了该位置表面的完整PBR材质属性。
  3. 高效率的双向转换:在单核CPU上,将带纹理的网格转换为O-Voxel表示耗时小于10秒;在CUDA加速下,逆向转换回带纹理的网格仅需小于100毫秒。

(二)稀疏3D VAE编码

TRELLIS.2采用稀疏3D变分自编码器(VAE),通过16倍的空间下采样率将3D资产编码到紧凑的潜在空间中。这种设计使得模型能够高效地处理大规模数据集,并在保持高分辨率的同时显著提升处理效率。

(三)高效渲染与后处理

TRELLIS.2结合CUDA加速的网格处理工具(如CuMesh)和高效的渲染技术,快速生成高质量的3D模型,并支持实时渲染和后处理操作。

四、应用场景

(一)游戏开发

TRELLIS.2在游戏开发中具有巨大的应用潜力。它能够快速生成高质量的3D游戏资产,如角色、道具和场景等,显著提升开发效率并降低制作成本。通过高效的图像到3D生成能力,开发者可以在短时间内创建出复杂的3D模型,加速游戏开发流程,同时保证资产的高质量和逼真度。

(二)影视制作

在影视制作领域,TRELLIS.2可用于创建逼真的3D特效和虚拟场景。其支持复杂材质和纹理的能力,满足影视行业对视觉效果的高要求。无论是复杂的机械结构还是细腻的自然场景,TRELLIS.2都能生成高质量的3D模型,为影视特效制作提供强大的支持。

(三)虚拟现实(VR)和增强现实(AR)

TRELLIS.2能够生成沉浸式的3D环境和物体,增强用户体验。这使其非常适合用于VR和AR应用的开发。通过快速生成高质量的3D资产,开发者可以为用户提供更加逼真和互动的虚拟体验,推动VR和AR技术在教育、娱乐和工业等领域的应用。

(四)建筑设计与可视化

TRELLIS.2可以快速生成建筑模型和室内设计的3D可视化。设计师可以利用该模型快速将设计图纸转化为逼真的3D模型,帮助客户更好地理解和评估设计方案。其高效的生成能力和高质量的输出,使得建筑设计和可视化变得更加高效和直观。

(五)工业设计与产品开发

在工业设计和产品开发中,TRELLIS.2能够创建产品原型的3D模型,加速设计迭代过程。设计师可以快速生成不同版本的3D模型,进行虚拟展示和功能测试,从而缩短产品开发周期,降低开发成本,提高产品的市场竞争力。

(六)教育与培训

TRELLIS.2作为教学工具,可以帮助学生和受训者更好地理解和掌握3D建模、渲染和设计的相关知识和技能。通过直观的3D模型生成和展示,学生可以更快速地学习复杂的概念和技巧,提高学习效果。此外,它还可以用于虚拟实验室和培训模拟,提供更加真实的学习环境。

五、快速使用

以下是基于Hugging Face Spaces的TRELLIS.2部署和使用实践:

(一)环境准备

TRELLIS.2需要在Linux系统上运行,并且需要至少24GB显存的NVIDIA GPU。推荐使用CUDA 12.4版本。

(二)安装步骤

  1. 克隆TRELLIS.2项目仓库:
git clone -b main https://github.com/microsoft/TRELLIS.2.git --recursive
cd TRELLIS.2
  1. 安装依赖:
. ./setup.sh --new-env --basic --flash-attn --nvdiffrast --nvdiffrec --cumesh --o-voxel --flexgemm

(三)使用示例

以下是一个使用TRELLIS.2进行图像到3D生成的示例:

import os
os.environ['OPENCV_IO_ENABLE_OPENEXR'] = '1'
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True"
import cv2
import imageio
from PIL import Image
import torch
from trellis2.pipelines import Trellis2ImageTo3DPipeline
from trellis2.utils import render_utils
from trellis2.renderers import EnvMap
import o_voxel

# 1. 设置环境贴图
envmap = EnvMap(torch.tensor(
    cv2.cvtColor(cv2.imread('assets/hdri/forest.exr', cv2.IMREAD_UNCHANGED), cv2.COLOR_BGR2RGB),
    dtype=torch.float32, device='cuda'
))

# 2. 加载Pipeline
pipeline = Trellis2ImageTo3DPipeline.from_pretrained("microsoft/TRELLIS.2-4B")
pipeline.cuda()

# 3. 加载图像并运行
image = Image.open("assets/example_image/T.png")
mesh = pipeline.run(image)[0]
mesh.simplify(16777216)  # nvdiffrast限制

# 4. 渲染视频
video = render_utils.make_pbr_vis_frames(render_utils.render_video(mesh, envmap=envmap))
imageio.mimsave("sample.mp4", video, fps=15)

# 5. 导出为GLB
glb = o_voxel.postprocess.to_glb(
    vertices=mesh.vertices,
    faces=mesh.faces,
    attr_volume=mesh.attrs,
    coords=mesh.coords,
    attr_layout=mesh.layout,
    voxel_size=mesh.voxel_size,
    aabb=[[-0.5, -0.5, -0.5], [0.5, 0.5, 0.5]],
    decimation_target=1000000,
    texture_size=4096,
    remesh=True,
    remesh_band=1,
    remesh_project=0,
    verbose=True
)
glb.export("sample.glb", extension_webp=True)

六、结语

TRELLIS.2作为微软开源的40亿参数图像转3D生成模型,凭借其高效的O-Voxel表示法和稀疏3D VAE编码技术,在3D内容创作领域展现出了巨大的潜力和应用价值。无论是游戏开发、影视制作还是建筑设计,TRELLIS.2都能快速生成高质量的3D资产,极大地提升了创作效率。未来,随着技术的进一步发展和优化,TRELLIS.2有望在更多领域发挥更大的作用。

项目地址

  • 项目官网:https://microsoft.github.io/TRELLIS.2/
  • Github仓库:https://github.com/microsoft/TRELLIS.2
  • Hugging Face模型库:https://huggingface.co/microsoft/TRELLIS.2-4B
  • arXiv技术论文:https://arxiv.org/pdf/2512.14692
  • 在线体验Demo:https://huggingface.co/spaces/microsoft/TRELLIS.2

在这里插入图片描述

🎯🔖更多专栏系列文章:AI大模型提示工程完全指南AI大模型探索之路(零基础入门)AI大模型预训练微调进阶AI大模型开源精选实践AI大模型RAG应用探索实践🔥🔥🔥 其他专栏可以查看博客主页📑

😎 作者介绍:资深程序老猿,从业10年+、互联网系统架构师,目前专注于AIGC的探索(CSDN博客之星|AIGC领域优质创作者)
📖专属社群:欢迎关注【小兵的AI视界】公众号或扫描下方👇二维码,回复‘入群’ 即刻上车,获取邀请链接。
💘领取三大专属福利:1️⃣免费赠送AI+编程📚500本,2️⃣AI技术教程副业资料1套,3️⃣DeepSeek资料教程1套🔥(限前500人)
如果文章内容对您有所触动,别忘了点赞、⭐关注,收藏!加入我们,一起携手同行AI的探索之旅,开启智能时代的大门!

Logo

有“AI”的1024 = 2048,欢迎大家加入2048 AI社区

更多推荐