【学术会议前沿信息|科研必备】IEEE/ACM双出版-EI快速检索!先进算法与控制工程、电气技术与自动化工程、AI智能赋能数字创意设计、虚拟现实与交互设计四大领域2026春之约!
【学术会议前沿信息|科研必备】IEEE/ACM双出版-EI快速检索!先进算法与控制工程、电气技术与自动化工程、AI智能赋能数字创意设计、虚拟现实与交互设计四大领域2026春之约!
【学术会议前沿信息|科研必备】IEEE/ACM双出版-EI快速检索!先进算法与控制工程、电气技术与自动化工程、AI智能赋能数字创意设计、虚拟现实与交互设计四大领域2026春之约!
【学术会议前沿信息|科研必备】IEEE/ACM双出版-EI快速检索!先进算法与控制工程、电气技术与自动化工程、AI智能赋能数字创意设计、虚拟现实与交互设计四大领域2026春之约!
文章目录
欢迎铁子们点赞、关注、收藏!
祝大家逢考必过!逢投必中!上岸上岸上岸!upupup
大多数高校硕博生毕业要求需要参加学术会议,发表EI或者SCI检索的学术论文会议论文。详细信息可扫描博文下方二维码 “
学术会议小灵通”或参考学术信息专栏:https://ais.cn/u/mmmiUz
前言
春回大地,学术之帆再起航!从泉城济南到创新深圳,从国际都会到制造名城,四大高规格国际会议齐聚三月,为你的前沿研究提供一周内快速录用与稳定检索的黄金通道!
🧮 第九届先进算法与控制工程国际学术会议(ICAACE 2026)
2026 9th International Conference on Advanced Algorithms and Control Engineering
- ⏰ 会议时间:2026年3月20-22日
- 📍 会议地点:中国·济南
- ✨ 会议亮点:同济大学与山东师范大学联合主办,IEEE出版保证,一周左右快速录用,在泉城探讨算法与控制工程的前沿融合。
- 🔍 收录检索:IEEE Xplore, EI Compendex, Scopus
- 👥 适合人群:专注于智能算法设计、控制理论、系统优化等方向的硕士、博士及青年教师。
- 领域:智能控制算法、系统优化
import numpy as np
from scipy.linalg import solve_continuous_are
class AdaptiveModelPredictiveControl:
"""自适应模型预测控制(MPC)算法"""
def __init__(self, system_order=3, horizon=10):
self.n = system_order
self.N = horizon
self.Q = np.eye(self.n) # 状态权重
self.R = np.eye(1) # 控制权重
def solve_mpc(self, current_state, reference_trajectory):
"""实时MPC求解器"""
# 构建优化问题
n_vars = self.N * (self.n + 1) # 状态 + 控制
# 简化的二次规划形式
H = self.build_hessian_matrix()
f = self.build_gradient_vector(current_state, reference_trajectory)
# 约束条件:状态和控制约束
A_eq, b_eq = self.build_equality_constraints(current_state)
# 求解QP问题(简化解法)
# 这里使用拉格朗日乘子法简化求解
K = self.calculate_lqr_gain() # LQR作为MPC的简化
u_optimal = -K @ current_state
return u_optimal
def calculate_lqr_gain(self):
"""计算LQR反馈增益(MPC的简化)"""
# 系统动力学(随机生成示例)
A = np.random.randn(self.n, self.n) * 0.9
B = np.random.randn(self.n, 1)
# 求解代数Riccati方程
P = solve_continuous_are(A, B, self.Q, self.R)
# 计算最优反馈增益
K = np.linalg.inv(self.R) @ B.T @ P
return K
def adaptive_tuning(self, tracking_error):
"""基于跟踪误差的自适应参数调整"""
# 自适应调整权重矩阵
error_norm = np.linalg.norm(tracking_error)
# 根据误差调整控制强度
if error_norm > 1.0:
self.R *= 0.9 # 加强控制
elif error_norm < 0.1:
self.R *= 1.1 # 减弱控制
return self.R
class SwarmIntelligenceOptimizer:
"""群体智能优化算法"""
def particle_swarm_optimization(self, objective_func, dim=5, n_particles=30):
"""粒子群优化算法"""
# 初始化粒子
particles = np.random.randn(n_particles, dim)
velocities = np.random.randn(n_particles, dim) * 0.1
# 个体最优和全局最优
pbest = particles.copy()
pbest_values = np.array([objective_func(p) for p in particles])
gbest = particles[np.argmin(pbest_values)]
gbest_value = np.min(pbest_values)
# 优化参数
w = 0.729 # 惯性权重
c1 = 1.494 # 个体学习因子
c2 = 1.494 # 社会学习因子
for iteration in range(100):
for i in range(n_particles):
# 更新速度
r1, r2 = np.random.rand(2)
velocities[i] = (w * velocities[i] +
c1 * r1 * (pbest[i] - particles[i]) +
c2 * r2 * (gbest - particles[i]))
# 更新位置
particles[i] += velocities[i]
# 评估适应度
current_value = objective_func(particles[i])
# 更新个体最优
if current_value < pbest_values[i]:
pbest[i] = particles[i]
pbest_values[i] = current_value
# 更新全局最优
if current_value < gbest_value:
gbest = particles[i]
gbest_value = current_value
return gbest, gbest_value
⚡ 第三届电气技术与自动化工程国际学术会议(ETAE 2026)
The 3rd International Conference on Electrical Technology and Automation Engineering
- ⏰ 会议时间:2026年3月20-22日
- 📍 会议地点:中国·深圳
- ✨ 会议亮点:IEEE出版护航,3-10个工作日内回复,在创新之都深圳聚焦电气自动化技术的新成果与新应用。
- 🔍 收录检索:EI Compendex, Scopus, IEEE Xplore
- 👥 适合人群:从事电气工程、工业自动化、智能控制等领域的科研人员、工程师及研究生。
- 领域:智能电网、电力电子控制
import numpy as np
from scipy import signal
class PowerQualityEnhancer:
"""电能质量增强与谐波抑制算法"""
def __init__(self, sampling_freq=10000, fundamental_freq=50):
self.fs = sampling_freq
self.f0 = fundamental_freq
def adaptive_harmonic_filter(self, voltage_signal, harmonic_orders=[3, 5, 7]):
"""自适应谐波滤波器"""
t = np.arange(len(voltage_signal)) / self.fs
filtered_signal = voltage_signal.copy()
for order in harmonic_orders:
harmonic_freq = self.f0 * order
# 生成参考信号
ref_sin = np.sin(2 * np.pi * harmonic_freq * t)
ref_cos = np.cos(2 * np.pi * harmonic_freq * t)
# LMS自适应滤波
w_sin, w_cos = 0.0, 0.0
mu = 0.01 # 学习率
for i in range(len(voltage_signal)):
# 估计谐波分量
harmonic_est = w_sin * ref_sin[i] + w_cos * ref_cos[i]
# 误差信号
error = voltage_signal[i] - harmonic_est
# 更新权重
w_sin += 2 * mu * error * ref_sin[i]
w_cos += 2 * mu * error * ref_cos[i]
# 从原始信号中减去谐波
filtered_signal[i] -= harmonic_est
return filtered_signal
def reactive_power_compensation(self, voltage, current):
"""动态无功功率补偿算法"""
# 计算瞬时有功和无功功率
S = voltage * np.conj(current) # 复功率
# 分离有功和无功分量
P = np.real(S) # 有功功率
Q = np.imag(S) # 无功功率
# 目标:将功率因数提高到0.95以上
target_pf = 0.95
target_Q = P * np.tan(np.arccos(target_pf))
# 计算需要补偿的无功功率
Q_compensation = Q - target_Q
# 生成补偿信号(简化)
compensation_signal = np.sign(Q_compensation) * np.sqrt(np.abs(Q_compensation))
return compensation_signal
class MicrogridEnergyManager:
"""微电网能量管理与优化调度"""
def optimal_power_dispatch(self, load_demand, renewable_generation, battery_soc):
"""最优功率调度算法"""
n_time_slots = len(load_demand)
# 决策变量:电网购电、电池充放电、柴油发电
grid_power = np.zeros(n_time_slots)
battery_power = np.zeros(n_time_slots)
diesel_power = np.zeros(n_time_slots)
# 成本参数
grid_price = np.array([0.6 if 8 <= i < 22 else 0.3 for i in range(n_time_slots)]) # 峰谷电价
diesel_cost = 0.8 # 元/kWh
battery_degradation_cost = 0.1 # 元/kWh
for t in range(n_time_slots):
net_load = load_demand[t] - renewable_generation[t]
# 优化决策(简化启发式规则)
if net_load > 0: # 需要供电
# 优先使用电池(如果SOC允许)
if battery_soc > 0.3 and battery_soc > net_load * 0.1:
battery_discharge = min(net_load, battery_soc * 10) # 假设电池容量系数
battery_power[t] = -battery_discharge
net_load -= battery_discharge
# 然后使用电网(考虑电价)
if grid_price[t] < diesel_cost:
grid_power[t] = min(net_load, 50) # 电网功率限制
net_load -= grid_power[t]
# 最后使用柴油发电机
if net_load > 0:
diesel_power[t] = net_load
else: # 过剩发电
excess_power = -net_load
# 优先给电池充电
if battery_soc < 0.9:
battery_charge = min(excess_power, (0.9 - battery_soc) * 10)
battery_power[t] = battery_charge
excess_power -= battery_charge
# 多余的可卖回电网
if excess_power > 0:
grid_power[t] = -excess_power # 负值表示向电网送电
return grid_power, battery_power, diesel_power
🎨 第二届人工智能赋能数字创意设计国际学术会议(AIEDCD 2026)
The 2nd International Conference on AI-Enabled Digital Creative Design
- ⏰ 会议时间:2026年3月27-29日
- 📍 会议地点:中国·北京 & 意大利(线上线下结合)
- ✨ 会议亮点:双会场国际交流,三日极速审稿,探索人工智能与艺术设计的跨界融合与创新应用。
- 🔍 收录检索:Scopus, Springer Nature Link, Google Scholar
- 👥 适合人群:致力于AIGC、数字艺术、创意计算、智能设计等交叉学科的研究者与设计师。
- 领域:AIGC、创意生成、风格迁移
import numpy as np
from PIL import Image
import torch
import torch.nn as nn
import torch.nn.functional as F
class NeuralStyleTransfer:
"""基于神经网络的风格迁移算法"""
def __init__(self, content_weight=1e4, style_weight=1e-2):
self.content_weight = content_weight
self.style_weight = style_weight
def compute_content_loss(self, content_features, generated_features):
"""计算内容损失"""
return F.mse_loss(generated_features, content_features)
def gram_matrix(self, features):
"""计算Gram矩阵(风格表示)"""
b, c, h, w = features.size()
features_reshaped = features.view(b * c, h * w)
gram = torch.mm(features_reshaped, features_reshaped.t())
return gram.div(b * c * h * w)
def compute_style_loss(self, style_features_list, generated_features_list):
"""计算风格损失"""
style_loss = 0
for style_feat, gen_feat in zip(style_features_list, generated_features_list):
style_gram = self.gram_matrix(style_feat)
gen_gram = self.gram_matrix(gen_feat)
style_loss += F.mse_loss(gen_gram, style_gram)
return style_loss
def total_variation_loss(self, image):
"""总变分损失(平滑性约束)"""
h_diff = image[:, :, 1:, :] - image[:, :, :-1, :]
w_diff = image[:, :, :, 1:] - image[:, :, :, :-1]
return (h_diff.abs().mean() + w_diff.abs().mean())
class CreativeGAN:
"""创意生成对抗网络"""
def __init__(self, latent_dim=100, style_dim=50):
self.latent_dim = latent_dim
self.style_dim = style_dim
def generate_creative_design(self, text_prompt, style_vector):
"""基于文本提示和风格向量的创意生成"""
# 文本编码
text_embedding = self.encode_text(text_prompt)
# 风格融合
combined_latent = self.fuse_latent_vectors(text_embedding, style_vector)
# 生成图像
generated_image = self.generator(combined_latent)
return generated_image
def encode_text(self, text_prompt):
"""文本编码器(简化)"""
# 使用预训练文本模型获取嵌入
# 这里用随机向量模拟
return np.random.randn(self.latent_dim)
def fuse_latent_vectors(self, text_vector, style_vector):
"""潜在向量融合"""
# 注意力融合机制
attention_weights = self.compute_cross_attention(text_vector, style_vector)
fused_vector = attention_weights * text_vector + (1 - attention_weights) * style_vector
return fused_vector
class AICompositionAssistant:
"""AI构图与设计辅助算法"""
def rule_of_thirds(self, image, objects):
"""三分法则构图优化"""
height, width = image.shape[:2]
third_x = width / 3
third_y = height / 3
# 计算兴趣点的位置
interest_points = []
for obj in objects:
cx, cy = obj['center']
# 计算到三分点的距离
distances = []
for i in range(1, 4):
for j in range(1, 4):
grid_x = i * third_x
grid_y = j * third_y
dist = np.sqrt((cx - grid_x)**2 + (cy - grid_y)**2)
distances.append(dist)
# 如果当前位置不好,建议移动方向
if min(distances) > min(third_x, third_y) * 0.5:
# 找到最近的三分点
best_idx = np.argmin(distances)
best_x = ((best_idx % 3) + 1) * third_x
best_y = ((best_idx // 3) + 1) * third_y
interest_points.append({
'current': (cx, cy),
'suggested': (best_x, best_y),
'movement_vector': (best_x - cx, best_y - cy)
})
return interest_points
def color_harmony_analysis(self, color_palette):
"""色彩和谐度分析"""
# 将RGB转换到HSV空间
hsv_colors = self.rgb_to_hsv(color_palette)
# 计算色相分布
hues = hsv_colors[:, 0]
# 分析色相关系
harmony_score = 0
n_colors = len(hues)
for i in range(n_colors):
for j in range(i+1, n_colors):
hue_diff = abs(hues[i] - hues[j])
# 检查是否属于和谐色相关系
if hue_diff < 30: # 类似色
harmony_score += 1
elif 60 < hue_diff < 120: # 对比色
harmony_score += 0.8
elif 150 < hue_diff < 210: # 互补色
harmony_score += 0.6
# 归一化分数
max_possible = n_colors * (n_colors - 1) / 2
harmony_score = harmony_score / max_possible if max_possible > 0 else 0
return harmony_score
🥽 第二届人工智能、虚拟现实与交互设计国际学术会议(AIVRID 2026)
The 2nd International Conference on Artificial Intelligence, Virtual Reality and Interaction Design
- ⏰ 会议时间:2026年3月27-29日
- 📍 会议地点:广东省东莞市
- ✨ 会议亮点:ACM出版社出版,EI/Scopus双检索稳定快速,在世界工厂探讨智能交互与虚拟现实的技术突破。
- 🔍 收录检索:EI Compendex, Scopus, ACM Digital Library
- 👥 适合人群:从事人机交互、虚拟现实技术、智能用户体验等前沿方向的研究人员与开发者。
- 领域:VR交互、眼动追踪、沉浸式体验
import numpy as np
from collections import deque
class GazePredictionModel:
"""基于深度学习的视线预测模型"""
def __init__(self, sequence_length=10):
self.seq_len = sequence_length
self.gaze_history = deque(maxlen=sequence_length)
def predict_next_gaze(self, current_gaze, head_pose, scene_saliency):
"""预测下一时刻的视线位置"""
# 特征提取
gaze_features = self.extract_gaze_features(current_gaze)
head_features = self.extract_head_features(head_pose)
saliency_features = self.extract_saliency_features(scene_saliency)
# 特征融合
combined_features = np.concatenate([
gaze_features, head_features, saliency_features
])
# LSTM预测(简化版本)
self.gaze_history.append(combined_features)
if len(self.gaze_history) == self.seq_len:
# 使用简化的时序模型预测
predicted_gaze = self.temporal_predictor(np.array(self.gaze_history))
return predicted_gaze
return current_gaze # 历史不足时返回当前值
def temporal_predictor(self, sequence):
"""时序预测器(简化LSTM)"""
# 简化的注意力机制
attention_weights = self.compute_attention_weights(sequence)
# 加权平均
weighted_sequence = sequence * attention_weights[:, np.newaxis]
predicted = np.mean(weighted_sequence, axis=0)
return predicted[:2] # 返回预测的(x,y)坐标
class HapticFeedbackOptimizer:
"""触觉反馈优化算法"""
def adaptive_haptic_intensity(self, virtual_object, user_interaction, user_sensitivity):
"""自适应触觉强度调整"""
# 物体属性
object_material = virtual_object.get('material', 'default')
object_rigidity = virtual_object.get('rigidity', 0.5)
# 交互属性
interaction_force = user_interaction.get('force', 1.0)
interaction_speed = user_interaction.get('speed', 1.0)
# 用户敏感度
sensitivity_factor = user_sensitivity.get('haptic', 1.0)
# 基础强度计算
base_intensity = interaction_force * object_rigidity
# 材料类型调整
material_multipliers = {
'metal': 1.2,
'wood': 0.8,
'fabric': 0.5,
'glass': 1.0,
'default': 1.0
}
material_factor = material_multipliers.get(object_material, 1.0)
# 速度相关调整(高速交互减弱细节)
speed_factor = 1.0 / (1.0 + 0.1 * interaction_speed)
# 最终强度
final_intensity = base_intensity * material_factor * speed_factor * sensitivity_factor
# 限制在合理范围
final_intensity = np.clip(final_intensity, 0.1, 1.0)
return final_intensity
def texture_rendering(self, surface_properties, finger_position):
"""表面纹理渲染算法"""
# 获取表面纹理属性
texture_type = surface_properties.get('texture_type', 'smooth')
roughness = surface_properties.get('roughness', 0.5)
pattern_scale = surface_properties.get('pattern_scale', 1.0)
# 根据纹理类型生成触觉信号
if texture_type == 'bumpy':
# 凹凸纹理
frequency = 10.0 * pattern_scale
amplitude = 0.3 * roughness
haptic_signal = amplitude * np.sin(frequency * finger_position)
elif texture_type == 'grainy':
# 颗粒感纹理
frequency = 20.0 * pattern_scale
amplitude = 0.2 * roughness
haptic_signal = amplitude * np.random.randn(len(finger_position)) * 0.5
elif texture_type == 'ridged':
# 脊状纹理
frequency = 5.0 * pattern_scale
amplitude = 0.4 * roughness
haptic_signal = amplitude * np.sign(np.sin(frequency * finger_position))
else: # smooth
haptic_signal = np.zeros_like(finger_position)
return haptic_signal
class VRPerformanceOptimizer:
"""VR性能优化与渲染算法"""
def foveated_rendering(self, gaze_point, resolution_map):
"""注视点渲染优化"""
# 创建多层分辨率区域
foveal_radius = 50 # 像素
parafoveal_radius = 150
peripheral_radius = 400
# 分辨率比例
foveal_quality = 1.0 # 100% 质量
parafoveal_quality = 0.5 # 50% 质量
peripheral_quality = 0.25 # 25% 质量
# 为每个像素分配质量级别
height, width = resolution_map.shape[:2]
optimized_map = np.zeros((height, width))
for y in range(height):
for x in range(width):
distance = np.sqrt((x - gaze_point[0])**2 + (y - gaze_point[1])**2)
if distance <= foveal_radius:
quality = foveal_quality
elif distance <= parafoveal_radius:
quality = parafoveal_quality
elif distance <= peripheral_radius:
quality = peripheral_quality
else:
quality = 0.1 # 最低质量
optimized_map[y, x] = quality
return optimized_map
def motion_prediction(self, head_motion_history, prediction_horizon=5):
"""头部运动预测减少运动到光子延迟"""
# 使用卡尔曼滤波预测未来位置
n_samples = len(head_motion_history)
if n_samples < 3:
return head_motion_history[-1] if n_samples > 0 else np.zeros(6)
# 简化的线性外推
recent_motions = head_motion_history[-3:]
# 计算速度和加速度
velocity = recent_motions[2] - recent_motions[1]
acceleration = (recent_motions[2] - recent_motions[1]) - (recent_motions[1] - recent_motions[0])
# 预测未来位置
predicted = recent_motions[2] + velocity * prediction_horizon + 0.5 * acceleration * prediction_horizon**2
return predicted
- 春光明媚,正是投稿好时节!无论你的研究聚焦于智能算法、电气自动化、数字创意还是人机交互,这四大高规格国际会议都为你搭建了通往学术前沿的桥梁。快速审稿通道已全面开启,权威出版检索有保障,期待你的精彩研究成果闪耀2026国际学术舞台!
更多推荐

所有评论(0)