【系统架构】CANN运行时组件架构设计与API实战:runtime运行时完全指南
**runtime** 是CANN提供的运行时组件,为AI应用提供高效的硬件资源管理、模型推理、单算子执行等核心能力。作为连接上层应用和底层硬件的桥梁,runtime组件封装了复杂的硬件操作细节,提供简洁易用的API接口,使开发者能够专注于业务逻辑而非底层实现。
·
3.【系统架构】CANN运行时组件架构设计与API实战:runtime运行时完全指南
一、项目简介
runtime 是CANN提供的运行时组件,为AI应用提供高效的硬件资源管理、模型推理、单算子执行等核心能力。作为连接上层应用和底层硬件的桥梁,runtime组件封装了复杂的硬件操作细节,提供简洁易用的API接口,使开发者能够专注于业务逻辑而非底层实现。
runtime组件提供了从设备初始化、内存管理、模型加载到推理执行的完整流程支持,是构建高性能AI应用的基础设施。无论是单算子测试、模型推理,还是资源监控与管理,runtime都提供了完善的解决方案。
相关链接:
- CANN组织链接:https://atomgit.com/cann
- runtime仓库链接:https://atomgit.com/cann/runtime
二、核心功能与特性
2.1 Runtime核心模块
| 模块 | 功能 | 主要API |
|---|---|---|
| 设备管理 | 设备初始化、资源分配 | aclrtSetDevice, aclrtGetDevice |
| 内存管理 | 内存分配、释放、拷贝 | aclrtMalloc, aclrtMemcpy |
| 模型加载 | 模型加载、卸载、描述 | aclmdlLoadFromFile, aclmdlExecute |
| 数据预处理 | 图像预处理、格式转换 | aclvpp |
| 算子执行 | 单算子执行 | aclopExecute |
| 流程管理 | Stream和Event管理 | aclrtCreateStream, aclrtRecordEvent |
2.2 技术特性
- 统一接口:提供统一的C/C++/Python API
- 异步执行:支持Stream异步执行提高效率
- 内存优化:支持零拷贝、内存复用等优化
- 多设备支持:支持单机多卡并行计算
- 维测能力:内置性能分析和调试工具
三、环境准备
3.1 系统要求
- 操作系统:Ubuntu 18.04/20.04/22.04
- 处理器:Atlas系列AI加速器
- CANN版本:CANN 8.0.RC3及以上
- Python版本:3.8-3.10
- 驱动版本:配套的驱动固件
3.2 安装配置
# 克隆runtime仓库
git clone https://atomgit.com/cann/runtime.git
cd runtime
# 安装Python依赖
pip install numpy opencv-python pillow
# 编译安装
mkdir build && cd build
cmake .. \
-DCMAKE_BUILD_TYPE=Release \
-DCANN_INSTALL_PATH=/usr/local/Ascend \
-DBUILD_PYTHON_BINDINGS=ON
make -j$(nproc)
make install
# 配置环境变量
export LD_LIBRARY_PATH=/usr/local/Ascend/ascend-toolkit/latest/lib64:$LD_LIBRARY_PATH
export PYTHONPATH=/usr/local/Ascend/ascend-toolkit/latest/python/site-packages:$PYTHONPATH
# 验证安装
python3 -c "import acl; print('runtime installed successfully')"
四、设备管理示例
4.1 设备初始化与资源管理
import acl
import numpy as np
class DeviceManager:
"""设备管理器"""
def __init__(self, device_id=0):
self.device_id = device_id
self.context = None
self.is_initialized = False
def init(self):
"""初始化设备"""
# 初始化ACL
ret = acl.init()
if ret != 0:
raise RuntimeError(f"Failed to initialize ACL, ret={ret}")
# 指定计算设备
ret = acl.rt.set_device(self.device_id)
if ret != 0:
raise RuntimeError(f"Failed to set device, ret={ret}")
# 创建Context
self.context = acl.rt.create_context(self.device_id)
if self.context is None:
raise RuntimeError("Failed to create context")
self.is_initialized = True
print(f"Device {self.device_id} initialized successfully")
def get_device_count(self):
"""获取设备数量"""
device_count = 0
ret = acl.rt.get_device_count(device_count)
if ret == 0:
return device_count
return 0
def get_device_info(self):
"""获取设备信息"""
# 获取设备版本信息
version_info = acl.rt.get_version()
print(f"Device Version: {version_info}")
# 获取设备内存信息
memory_info = acl.rt.get_mem_info()
print(f"Total Memory: {memory_info['total'] / 1024**3:.2f} GB")
print(f"Free Memory: {memory_info['free'] / 1024**3:.2f} GB")
def reset(self):
"""重置设备"""
if self.context is not None:
acl.rt.destroy_context(self.context)
self.context = None
acl.rt.reset_device(self.device_id)
self.is_initialized = False
print(f"Device {self.device_id} reset successfully")
def __del__(self):
"""析构函数"""
if self.is_initialized:
self.reset()
acl.finalize()
# 使用示例
if __name__ == "__main__":
device = DeviceManager(device_id=0)
device.init()
device.get_device_info()
# 执行其他操作...
device.reset()
4.2 多设备并行管理
import acl
from concurrent.futures import ThreadPoolExecutor
class MultiDeviceManager:
"""多设备管理器"""
def __init__(self, device_ids):
self.device_ids = device_ids
self.devices = {}
def init_all(self):
"""初始化所有设备"""
acl.init()
for device_id in self.device_ids:
device = DeviceManager(device_id)
device.init()
self.devices[device_id] = device
print(f"Initialized {len(self.devices)} devices")
def execute_on_device(self, device_id, func, *args, **kwargs):
"""在指定设备上执行函数"""
if device_id not in self.devices:
raise ValueError(f"Device {device_id} not initialized")
device = self.devices[device_id]
return func(device, *args, **kwargs)
def parallel_execute(self, func, *args, **kwargs):
"""在所有设备上并行执行"""
with ThreadPoolExecutor(max_workers=len(self.device_ids)) as executor:
futures = []
for device_id in self.device_ids:
future = executor.submit(
self.execute_on_device, device_id, func, *args, **kwargs
)
futures.append(future)
results = [future.result() for future in futures]
return results
def release_all(self):
"""释放所有设备"""
for device in self.devices.values():
device.reset()
self.devices.clear()
acl.finalize()
# 使用示例
def process_on_device(device, data):
"""在设备上处理数据"""
print(f"Processing on device {device.device_id}")
# 执行计算...
return f"Result from device {device.device_id}"
if __name__ == "__main__":
device_ids = [0, 1, 2, 3]
multi_device = MultiDeviceManager(device_ids)
multi_device.init_all()
# 并行执行
results = multi_device.parallel_execute(process_on_device, "test_data")
print("Results:", results)
multi_device.release_all()
五、内存管理示例
5.1 基础内存操作
import acl
import numpy as np
class MemoryManager:
"""内存管理器"""
def __init__(self, device_id=0):
self.device_id = device_id
self.allocations = {}
def malloc(self, size, desc=""):
"""分配Device内存"""
ptr, size = acl.rt.malloc(size)
self.allocations[ptr] = {
'size': size,
'desc': desc
}
print(f"Allocated {size} bytes ({size/1024**2:.2f} MB) for {desc}")
return ptr, size
def free(self, ptr):
"""释放Device内存"""
if ptr in self.allocations:
size = self.allocations[ptr]['size']
desc = self.allocations[ptr]['desc']
acl.rt.free(ptr)
del self.allocations[ptr]
print(f"Freed {size} bytes ({size/1024**2:.2f} MB) for {desc}")
def memcpy_h2d(self, host_data, desc=""):
"""Host到Device内存拷贝"""
# 获取数据大小
if isinstance(host_data, np.ndarray):
size = host_data.nbytes
else:
size = len(host_data)
# 分配Device内存
device_ptr, _ = self.malloc(size, desc)
# 执行拷贝
acl.rt.memcpy(
device_ptr, # 目标地址(Device)
host_data, # 源地址(Host)
size, # 拷贝大小
acl.rt.MEMCPY_HOST_TO_DEVICE # 拷贝方向
)
return device_ptr
def memcpy_d2h(self, device_ptr, size, desc=""):
"""Device到Host内存拷贝"""
# 分配Host内存
host_data = np.zeros(size // 4, dtype=np.float32)
# 执行拷贝
acl.rt.memcpy(
host_data, # 目标地址(Host)
device_ptr, # 源地址(Device)
size, # 拷贝大小
acl.rt.MEMCPY_DEVICE_TO_HOST # 拷贝方向
)
return host_data
def memcpy_d2d(self, src_ptr, dst_ptr, size):
"""Device到Device内存拷贝"""
acl.rt.memcpy(
dst_ptr,
src_ptr,
size,
acl.rt.MEMCPY_DEVICE_TO_DEVICE
)
def get_memory_usage(self):
"""获取当前内存使用情况"""
total, free = acl.rt.get_mem_info(self.device_id)
used = total - free
print(f"Memory Usage: {used/1024**3:.2f} GB / {total/1024**3:.2f} GB "
f"({used/total*100:.1f}%)")
# 使用示例
if __name__ == "__main__":
device_id = 0
acl.rt.set_device(device_id)
mem_mgr = MemoryManager(device_id)
# 分配并拷贝数据
data = np.random.rand(1024, 1024).astype(np.float32)
device_ptr = mem_mgr.memcpy_h2d(data, "input_data")
# 查看内存使用
mem_mgr.get_memory_usage()
# 处理数据...
# 拷回结果
result = mem_mgr.memcpy_d2h(device_ptr, data.nbytes, "result")
# 释放内存
mem_mgr.free(device_ptr)
5.2 内存池管理
import acl
import numpy as np
from collections import defaultdict
class MemoryPool:
"""内存池管理器"""
def __init__(self, device_id=0, init_size=1024*1024*1024):
self.device_id = device_id
self.init_size = init_size
self.pool = {}
self.used_blocks = defaultdict(dict)
self.block_size = 64 * 1024 * 1024 # 64MB块大小
# 初始化内存池
self._init_pool()
def _init_pool(self):
"""初始化内存池"""
num_blocks = (self.init_size + self.block_size - 1) // self.block_size
for i in range(num_blocks):
ptr, size = acl.rt.malloc(self.block_size)
self.pool[ptr] = {
'size': self.block_size,
'allocated': False
}
print(f"Memory pool initialized with {len(self.pool)} blocks")
def allocate(self, size, desc=""):
"""从内存池分配内存"""
# 计算需要的块数量
num_blocks = (size + self.block_size - 1) // self.block_size
# 查找连续的空闲块
free_blocks = [ptr for ptr, info in self.pool.items()
if not info['allocated']]
if len(free_blocks) < num_blocks:
raise RuntimeError("Insufficient memory in pool")
# 分配块
allocated_blocks = free_blocks[:num_blocks]
for ptr in allocated_blocks:
self.pool[ptr]['allocated'] = True
self.used_blocks[ptr] = desc
return allocated_blocks[0], num_blocks * self.block_size
def free(self, ptr):
"""释放内存到内存池"""
# 释放该指针及其后续连续块
for block_ptr in self.pool.keys():
if self.pool[block_ptr]['allocated'] and block_ptr in self.used_blocks:
# 简化实现:释放所有块
self.pool[block_ptr]['allocated'] = False
del self.used_blocks[block_ptr]
def get_pool_stats(self):
"""获取内存池统计信息"""
total_blocks = len(self.pool)
used_blocks = sum(1 for info in self.pool.values() if info['allocated'])
free_blocks = total_blocks - used_blocks
total_memory = total_blocks * self.block_size
used_memory = used_blocks * self.block_size
free_memory = free_blocks * self.block_size
print(f"Memory Pool Stats:")
print(f" Total: {total_memory/1024**3:.2f} GB ({total_blocks} blocks)")
print(f" Used: {used_memory/1024**3:.2f} GB ({used_blocks} blocks)")
print(f" Free: {free_memory/1024**3:.2f} GB ({free_blocks} blocks)")
print(f" Usage: {used_blocks/total_blocks*100:.1f}%")
# 使用示例
if __name__ == "__main__":
device_id = 0
acl.rt.set_device(device_id)
pool = MemoryPool(device_id, init_size=512*1024*1024)
# 分配内存
ptr1, size1 = pool.allocate(100*1024*1024, "tensor_a")
ptr2, size2 = pool.allocate(50*1024*1024, "tensor_b")
pool.get_pool_stats()
# 释放内存
pool.free(ptr1)
pool.free(ptr2)
pool.get_pool_stats()
六、模型推理示例
6.1 模型加载与推理
import acl
import numpy as np
import cv2
class ModelInference:
"""模型推理类"""
def __init__(self, model_path, device_id=0):
self.model_path = model_path
self.device_id = device_id
self.model_id = None
self.model_desc = None
self.dataset = None
self.context = None
def init(self):
"""初始化"""
# 初始化ACL
acl.init()
# 设置设备
acl.rt.set_device(self.device_id)
self.context = acl.rt.create_context(self.device_id)
# 加载模型
self._load_model()
def _load_model(self):
"""加载模型文件"""
# 从文件加载模型
ret, self.model_id = acl.mdl.load_from_file(
self.model_path, # 模型文件路径
)
if ret != 0:
raise RuntimeError(f"Failed to load model, ret={ret}")
# 获取模型描述
self.model_desc = acl.mdl.create_desc()
ret = acl.mdl.get_desc(self.model_desc, self.model_id)
if ret != 0:
raise RuntimeError(f"Failed to get model desc, ret={ret}")
print(f"Model loaded successfully, model_id={self.model_id}")
# 打印模型信息
self._print_model_info()
def _print_model_info(self):
"""打印模型信息"""
# 获取输入信息
input_num = acl.mdl.get_num_inputs(self.model_desc)
print(f"Model has {input_num} inputs")
for i in range(input_num):
name = acl.mdl.get_input_name_by_index(self.model_desc, i)
size = acl.mdl.get_input_size_by_index(self.model_desc, i)
dims = acl.mdl.get_input_dims(self.model_desc, i)
print(f" Input {i}: name={name}, size={size}, dims={dims}")
# 获取输出信息
output_num = acl.mdl.get_num_outputs(self.model_desc)
print(f"Model has {output_num} outputs")
for i in range(output_num):
name = acl.mdl.get_output_name_by_index(self.model_desc, i)
size = acl.mdl.get_output_size_by_index(self.model_desc, i)
dims = acl.mdl.get_output_dims(self.model_desc, i)
print(f" Output {i}: name={name}, size={size}, dims={dims}")
def preprocess(self, image_path):
"""预处理输入图像"""
# 读取图像
image = cv2.imread(image_path)
if image is None:
raise ValueError(f"Failed to load image: {image_path}")
# 调整大小(假设模型需要224x224)
resized = cv2.resize(image, (224, 224))
# 归一化
normalized = resized.astype(np.float32) / 255.0
normalized = (normalized - [0.485, 0.456, 0.406]) / [0.229, 0.224, 0.225]
# 转换为CHW格式
chw = normalized.transpose(2, 0, 1)
# 增加batch维度
batched = np.expand_dims(chw, axis=0)
return batched.astype(np.float32)
def infer(self, input_data):
"""执行推理"""
# 准备输入数据集
self.dataset = acl.mdl.create_dataset()
# 获取输入大小
input_size = acl.mdl.get_input_size_by_index(
self.model_desc, 0
)
# 分配Device内存并拷贝数据
device_ptr, _ = acl.rt.malloc(input_size)
acl.rt.memcpy(
device_ptr,
input_data,
input_size,
acl.rt.MEMCPY_HOST_TO_DEVICE
)
# 设置输入数据集
acl.mdl.add_input_buffer(
self.dataset,
0, # 输入索引
device_ptr, # 数据指针
input_size # 数据大小
)
# 创建输出数据集
output_dataset = acl.mdl.create_dataset()
# 获取输出信息并分配内存
output_num = acl.mdl.get_num_outputs(self.model_desc)
output_ptrs = []
for i in range(output_num):
output_size = acl.mdl.get_output_size_by_index(self.model_desc, i)
device_ptr, _ = acl.rt.malloc(output_size)
output_ptrs.append(device_ptr)
acl.mdl.add_output_buffer(
output_dataset,
i,
device_ptr,
output_size
)
# 执行推理
ret = acl.mdl.execute(
self.model_id,
self.dataset,
output_dataset
)
if ret != 0:
raise RuntimeError(f"Failed to execute model, ret={ret}")
# 获取输出结果
results = []
for i, device_ptr in enumerate(output_ptrs):
output_size = acl.mdl.get_output_size_by_index(self.model_desc, i)
host_data = np.zeros(output_size // 4, dtype=np.float32)
acl.rt.memcpy(
host_data,
device_ptr,
output_size,
acl.rt.MEMCPY_DEVICE_TO_HOST
)
results.append(host_data)
# 释放输出内存
acl.rt.free(device_ptr)
# 清理资源
acl.mdl.destroy_dataset(output_dataset)
acl.mdl.destroy_dataset(self.dataset)
acl.rt.free(device_ptr)
return results
def finalize(self):
"""释放资源"""
if self.model_desc is not None:
acl.mdl.destroy_desc(self.model_desc)
if self.model_id is not None:
acl.mdl.unload(self.model_id)
if self.context is not None:
acl.rt.destroy_context(self.context)
acl.rt.reset_device(self.device_id)
acl.finalize()
# 使用示例
if __name__ == "__main__":
model_path = "model/resnet50.om"
image_path = "test_image.jpg"
# 创建推理实例
inference = ModelInference(model_path)
inference.init()
# 预处理
input_data = inference.preprocess(image_path)
# 推理
outputs = inference.infer(input_data)
# 处理输出
print("Inference completed!")
print(f"Output shape: {outputs[0].shape}")
# 释放资源
inference.finalize()
6.2 批量推理
import acl
import numpy as np
class BatchInference:
"""批量推理类"""
def __init__(self, model_path, device_id=0, batch_size=8):
self.model_path = model_path
self.device_id = device_id
self.batch_size = batch_size
self.model_id = None
self.model_desc = None
def init(self):
"""初始化"""
acl.init()
acl.rt.set_device(self.device_id)
self._load_model()
def _load_model(self):
"""加载模型"""
ret, self.model_id = acl.mdl.load_from_file(self.model_path)
if ret != 0:
raise RuntimeError(f"Failed to load model, ret={ret}")
self.model_desc = acl.mdl.create_desc()
ret = acl.mdl.get_desc(self.model_desc, self.model_id)
if ret != 0:
raise RuntimeError(f"Failed to get model desc, ret={ret}")
def infer_batch(self, batch_data):
"""批量推理"""
num_samples = len(batch_data)
results = []
# 分批处理
for start_idx in range(0, num_samples, self.batch_size):
end_idx = min(start_idx + self.batch_size, num_samples)
current_batch = batch_data[start_idx:end_idx]
# 构造batch输入
actual_batch_size = len(current_batch)
batch_input = np.stack(current_batch, axis=0)
# 执行推理
batch_result = self._infer_single(batch_input)
results.extend(batch_result)
return results
def _infer_single(self, input_data):
"""单次推理"""
dataset = acl.mdl.create_dataset()
input_size = acl.mdl.get_input_size_by_index(self.model_desc, 0)
device_ptr, _ = acl.rt.malloc(input_size)
acl.rt.memcpy(
device_ptr,
input_data,
input_size,
acl.rt.MEMCPY_HOST_TO_DEVICE
)
acl.mdl.add_input_buffer(dataset, 0, device_ptr, input_size)
# 执行推理
output_dataset = acl.mdl.create_dataset()
output_num = acl.mdl.get_num_outputs(self.model_desc)
output_ptrs = []
for i in range(output_num):
output_size = acl.mdl.get_output_size_by_index(self.model_desc, i)
device_ptr, _ = acl.rt.malloc(output_size)
output_ptrs.append(device_ptr)
acl.mdl.add_output_buffer(output_dataset, i, device_ptr, output_size)
ret = acl.mdl.execute(self.model_id, dataset, output_dataset)
if ret != 0:
raise RuntimeError(f"Failed to execute model, ret={ret}")
# 获取结果
results = []
for i, device_ptr in enumerate(output_ptrs):
output_size = acl.mdl.get_output_size_by_index(self.model_desc, i)
host_data = np.zeros(output_size // 4, dtype=np.float32)
acl.rt.memcpy(
host_data,
device_ptr,
output_size,
acl.rt.MEMCPY_DEVICE_TO_HOST
)
results.append(host_data)
acl.rt.free(device_ptr)
# 清理
acl.mdl.destroy_dataset(output_dataset)
acl.mdl.destroy_dataset(dataset)
return results
def finalize(self):
"""释放资源"""
if self.model_desc is not None:
acl.mdl.destroy_desc(self.model_desc)
if self.model_id is not None:
acl.mdl.unload(self.model_id)
acl.rt.reset_device(self.device_id)
acl.finalize()
# 使用示例
if __name__ == "__main__":
model_path = "model/resnet50.om"
batch_inference = BatchInference(model_path, batch_size=16)
batch_inference.init()
# 准备批量数据
batch_data = [np.random.rand(3, 224, 224).astype(np.float32) for _ in range(32)]
# 执行批量推理
results = batch_inference.infer_batch(batch_data)
print(f"Processed {len(results)} samples")
batch_inference.finalize()
七、Stream与Event示例
7.1 Stream异步执行
import acl
import numpy as np
class StreamManager:
"""Stream管理器"""
def __init__(self, device_id=0):
self.device_id = device_id
self.streams = {}
self.events = {}
self.stream_counter = 0
self.event_counter = 0
def create_stream(self, name=""):
"""创建Stream"""
stream = acl.rt.create_stream(acl.rt.stream_id)
stream_id = self.stream_counter
self.streams[stream_id] = {
'stream': stream,
'name': name or f"stream_{stream_id}"
}
self.stream_counter += 1
return stream_id
def create_event(self, name=""):
"""创建Event"""
event = acl.rt.create_event(acl.rt.event_id)
event_id = self.event_counter
self.events[event_id] = {
'event': event,
'name': name or f"event_{event_id}"
}
self.event_counter += 1
return event_id
def record_event(self, event_id, stream_id):
"""在Stream上记录Event"""
if event_id not in self.events or stream_id not in self.streams:
raise ValueError("Invalid event_id or stream_id")
event = self.events[event_id]['event']
stream = self.streams[stream_id]['stream']
acl.rt.record_event(event, stream)
print(f"Recorded event {event_id} on stream {stream_id}")
def wait_event(self, event_id, stream_id):
"""Stream等待Event"""
if event_id not in self.events or stream_id not in self.streams:
raise ValueError("Invalid event_id or stream_id")
event = self.events[event_id]['event']
stream = self.streams[stream_id]['stream']
acl.rt.wait_event(stream, event)
print(f"Stream {stream_id} waited for event {event_id}")
def synchronize_stream(self, stream_id):
"""同步Stream"""
if stream_id not in self.streams:
raise ValueError("Invalid stream_id")
stream = self.streams[stream_id]['stream']
acl.rt.synchronize_stream(stream)
print(f"Synchronized stream {stream_id}")
def async_memcpy_h2d(self, host_data, stream_id):
"""异步Host到Device拷贝"""
if stream_id not in self.streams:
raise ValueError("Invalid stream_id")
size = host_data.nbytes if isinstance(host_data, np.ndarray) else len(host_data)
device_ptr, _ = acl.rt.malloc(size)
stream = self.streams[stream_id]['stream']
acl.rt.memcpy_async(
device_ptr,
host_data,
size,
acl.rt.MEMCPY_HOST_TO_DEVICE,
stream
)
return device_ptr
def async_memcpy_d2h(self, device_ptr, size, stream_id):
"""异步Device到Host拷贝"""
if stream_id not in self.streams:
raise ValueError("Invalid stream_id")
host_data = np.zeros(size // 4, dtype=np.float32)
stream = self.streams[stream_id]['stream']
acl.rt.memcpy_async(
host_data,
device_ptr,
size,
acl.rt.MEMCPY_DEVICE_TO_HOST,
stream
)
return host_data
def release(self):
"""释放所有资源"""
for event_info in self.events.values():
acl.rt.destroy_event(event_info['event'])
for stream_info in self.streams.values():
acl.rt.destroy_stream(stream_info['stream'])
self.events.clear()
self.streams.clear()
# 使用示例
if __name__ == "__main__":
device_id = 0
acl.init()
acl.rt.set_device(device_id)
stream_mgr = StreamManager(device_id)
# 创建Stream和Event
stream1 = stream_mgr.create_stream("compute_stream")
stream2 = stream_mgr.create_stream("copy_stream")
event1 = stream_mgr.create_event("compute_done")
# 在stream1上执行计算
data1 = np.random.rand(1024, 1024).astype(np.float32)
device_ptr1 = stream_mgr.async_memcpy_h2d(data1, stream1)
# 记录event
stream_mgr.record_event(event1, stream1)
# 在stream2上等待event1
stream_mgr.wait_event(event1, stream2)
# 在stream2上执行后续操作
data2 = np.zeros((1024, 1024), dtype=np.float32)
stream_mgr.async_memcpy_d2h(device_ptr1, data2.nbytes, stream2)
# 同步stream2
stream_mgr.synchronize_stream(stream2)
print("Async operations completed")
# 释放资源
acl.rt.free(device_ptr1)
stream_mgr.release()
acl.rt.reset_device(device_id)
acl.finalize()
八、性能分析示例
8.1 性能数据采集
import acl
import time
from contextlib import contextmanager
class PerformanceProfiler:
"""性能分析器"""
def __init__(self, device_id=0):
self.device_id = device_id
self.metrics = {}
@contextmanager
def profile(self, name):
"""性能分析上下文管理器"""
# 开始时间
acl.rt.set_ts_mode(acl.rt.TIMESTAMP_MODE_NS)
start_ns = acl.rt.get_timestamp()
yield
# 结束时间
end_ns = acl.rt.get_timestamp()
duration_us = (end_ns - start_ns) / 1000 # 转换为微秒
self.metrics[name] = {
'duration_us': duration_us,
'duration_ms': duration_us / 1000
}
print(f"{name}: {duration_us:.2f} us ({duration_us/1000:.2f} ms)")
def get_device_memory_info(self):
"""获取设备内存信息"""
total, free = acl.rt.get_mem_info(self.device_id)
used = total - free
return {
'total_gb': total / 1024**3,
'used_gb': used / 1024**3,
'free_gb': free / 1024**3,
'usage_percent': (used / total) * 100
}
def print_summary(self):
"""打印性能汇总"""
print("\n=== Performance Summary ===")
if self.metrics:
print("\nOperation Timing:")
total_time = sum(m['duration_ms'] for m in self.metrics.values())
for name, metric in self.metrics.items():
pct = (metric['duration_ms'] / total_time) * 100
print(f" {name}: {metric['duration_ms']:.2f} ms ({pct:.1f}%)")
print(f" Total: {total_time:.2f} ms")
mem_info = self.get_device_memory_info()
print("\nMemory Usage:")
print(f" Total: {mem_info['total_gb']:.2f} GB")
print(f" Used: {mem_info['used_gb']:.2f} GB")
print(f" Free: {mem_info['free_gb']:.2f} GB")
print(f" Usage: {mem_info['usage_percent']:.1f}%")
# 使用示例
if __name__ == "__main__":
device_id = 0
acl.init()
acl.rt.set_device(device_id)
profiler = PerformanceProfiler(device_id)
with profiler.profile("memory_allocation"):
# 分配内存
size = 100 * 1024 * 1024 # 100MB
ptr, _ = acl.rt.malloc(size)
with profiler.profile("computation"):
# 执行计算...
time.sleep(0.01) # 模拟计算
with profiler.profile("memory_free"):
acl.rt.free(ptr)
profiler.print_summary()
acl.rt.reset_device(device_id)
acl.finalize()
九、应用场景
runtime组件广泛应用于以下场景:
| 场景 | 描述 | 使用模块 |
|---|---|---|
| 模型推理部署 | 加载和执行AI模型推理 | 模型加载、推理执行 |
| 批量数据处理 | 高效处理大规模数据 | 内存管理、批量推理 |
| 多卡并行训练 | 分布式训练资源管理 | 多设备管理、Stream |
| 实时推理服务 | 低延迟在线推理 | 异步执行、性能优化 |
| 资源监控 | 设备资源使用监控 | 性能分析、内存统计 |
十、总结
runtime作为CANN的运行时组件,为AI应用提供了完整的设备管理、内存管理、模型执行等基础能力。通过本文的介绍和示例代码,开发者可以全面了解runtime的架构设计和API使用方法,为构建高性能AI应用奠定坚实基础。
相关链接:
- CANN组织链接:https://atomgit.com/cann
- runtime仓库链接:https://atomgit.com/cann/runtime
更多推荐

所有评论(0)