大模型开发内卷加剧?一文读懂RAG、Workflow、Agent三大技术支柱,让你从“调包侠“变架构师
智能体开发平台由RAG、Workflow、Agent三大支柱构成,分别解决知识边界、流程边界和自主决策边界问题。这些技术协同工作,将大模型的不确定性约束在确定的业务框架内,实现从"能聊会说"到"走进具体业务场景"的转变。未来平台竞争将围绕评估体系标准化、能力模块化、人机协同设计等方面展开,真正能穿越技术深水区的平台将成为产业智能化的基础设施。
当大模型不再满足于“能聊会说”,而是开始走进客服、运营、风控、办公协同等具体场景时,人们很快发现:光有一个聪明的模型远远不够。
你需要它理解业务语境、调用公司内部系统、遵守流程规则,还要能对“不知道”的问题诚实以对。这一整套能力,不再是“一个模型”的问题,而是“一个平台”的问题——智能体(Agent)开发平台。
这篇文章尝试从工程视角,把“智能体平台”拆开看一看:它到底在解决什么问题?技术内核的“三根支柱”——RAG、Workflow 与 Agent 各自承担什么角色?以及当下真正卡住大家的技术深水区在哪里。

一、为什么需要智能体开发平台?
1. 从单点问答到复杂流程
早期大家对大模型的使用,基本停留在“问答”和“润色”层面:给一段文本,让它改写、翻译、总结,一问一答就结束了。
但真实业务场景远比这复杂:
- 智能客服要能理解客户诉求 → 查订单 → 走退款审核流程 → 记录工单
- 运营同学提一个“帮我做个双十二的活动方案” → 要理解目标人群 → 调取历史数据 → 生成方案 → 生成落地执行列表
- 内部知识助手要基于公司文档 → 检索 → 对比多个版本 → 给出合规答案
这些都不再是一个“对话回合”能搞定的,而是一个从感知 → 规划 → 执行 → 反馈的完整链条。
2. 平台的核心价值:把模型变成“数字员工”
大模型本身提供的是通用推理与语言能力,而企业需要的是:
- 会使用内部工具、API
- 懂业务规则和流程
- 能“说不清楚就问”、“不会就求助”的数字员工
这中间的缺口,需要一个工程化的平台来补:
- 把知识系统化接入(文档、图片、表格、数据库)
- 把业务流程抽象成可编排的工作流
- 把工具、接口、插件以标准化方式暴露给智能体
一个好的智能体开发平台,本质是在做一件事:把模型的“不确定输出”,约束在“确定的业务边界”之内。
3. 三个技术锚点
围绕这件事,可以把技术内核粗略划分为三根支柱:
- RAG(检索增强生成):让模型“有据可依”
- Workflow(工作流):让任务“井井有条”
- Agent(智能体):让系统具备一定“自主决策”能力
下面逐个拆开。
二、第一支柱:知识增强(RAG)——让模型“有据可依”
单靠大模型的“记忆”和预训练,无法覆盖企业大量的私有知识,更无法保证答案与最新政策、内部规范保持一致。这就是为什么 RAG 成为智能体平台的必选项。
1. 现代 RAG 的技术分层
(1)接入层:多模态知识的统一与分治
现实世界的知识,从来不是干净的文本:
- PDF 文档、Word、邮件往来
- Excel 报表、数据库表
- 图片、截图、扫描件
一个成熟的平台,要在接入层解决两个问题:
- 统一:将文本、表格、图片等统一视作“知识单元”,形成统一索引和元数据管理方式。
- 分治:不同类型文档使用不同的解析管线,例如:
- 文本做语义切分、分段、向量化
- 表格做结构抽取、字段对齐
- 图片先过 OCR/视觉模型,提取可检索的结构化信息
做得不好的平台,通常在这里就埋下“日后检索不准”的雷。
(2)检索层:精准 vs 召回,分而治之还是并行?
检索层本质是两件事:
- 找到“尽量全”的候选知识(召回)
- 从中选出“足够准”的那一小部分(精排)
面临几类典型权衡:
- 高召回 → 噪声多,容易让模型“发挥想象力”
- 高精度 → 容易漏掉关键信息,导致答非所问
复杂问题下还有一个现实难题:一个问题往往包含多个子问题。比如“对比我们去年的双11运营策略,分析今年的改进空间,并给出落地方案”。这类问题要不要先拆成多个检索子请求?很多平台开始尝试“分而治之”和“并行检索”的组合策略:
- 先用模型对问题做任务分解
- 每个子问题独立检索
- 最后在生成阶段综合多路检索结果
(3)生成层:如何把检索结果喂给模型?
RAG 不只是“找文档”,更关键的是怎么把这些文档有效地注入到提示词中,并控制生成质量:
- 片段选取:不是简单地“top-k 拼在一起”,而是要考虑上下文连贯性
- 模板设计:如何让模型明确区分“自己的推断”和“文档中的明确事实”
- 忠实度控制:通过“引用标注”、“引用率约束”等方式降低幻觉
从工程体验上看,一个简单的 RAG 和一个工程化的 RAG,差别往往在这一层真正拉开。
2. 技术能力分水岭:平台之间的差距在哪里?
(1)拒答与澄清机制
“装懂”是大模型的天性。
成熟的平台要在工程层面加一层护栏:
- 当知识库中检索结果信号很弱时,优先引导模型:
- 承认“当前资料不足”
- 提出澄清问题(补充时间范围、部门、产品线等)
- 对敏感领域(合规、风控、法务),可以设置更高拒答阈值
简单的 RAG 通常任由模型发挥;好的平台会明确区分“有依据”与“无依据”的回答路径。
(2)结构化数据查询:从自然语言到 SQL/API
对于报表、交易记录、日志这类结构化数据,检索文本已经不够,需要走:
自然语言 → SQL 或 API 调用 → 结果再交给模型解读
这中间的技术门槛在于:
- 能否正确推断涉及的表/字段
- 能否正确处理多表关联、聚合、过滤条件
- 出错时能否自动回退(如:
- 先用“解释计划”检测 SQL 合法性
- 出现异常时再次生成或提问澄清)
平台之间的差距,经常不是“能不能查”,而是“复杂报表场景下还能不能稳”。
(3)图文理解与引用
在实际项目中,你会频繁遇到:
- 用户发一张报错截图,问“这是什么问题?”
- 发一张合同扫描件,问“这条条款风险大吗?”
- 发一个产品宣传图,问“是否符合品牌规范?”
这已经超出纯文本检索,要求平台具备:
- 从图片中抽取关键文本和结构(OCR + 图像理解)
- 将图片和相关文档“绑在一起”索引
- 在回答时能“引用图片中的证据”,而不是凭空解释
对这块支持不完善的平台,在多模态场景中体验会非常割裂。
3. 当前共性技术瓶颈
即便技术栈看起来很“完整”,仍有几个广泛存在的痛点:
- 幻觉依然存在,特别是在:
- 知识不完整、碎片化时
- 问题本身模糊、不规范时
- 多模态文档的深层语义关联不仅考验模型,也考验平台的数据建模方式:图片、表格、文本之间的逻辑关系很难完全抽取和表达。
三、第二支柱:工作流(Workflow)——让任务“井井有条”
如果说 RAG 解决的是“知道这件事怎么回事”,工作流解决的就是“怎么把这件事完整做完”。
1. 工作流引擎的核心能力
(1)参数动态提取:从自然语言中“抠业务参数”
用户不会主动帮你填表单,他只会说:
- “帮我查下上个月华东大区的退款订单”
- “把我昨天没完成的审批再推一遍”
平台要自动从话语中提取:
- 时间范围、地域、产品线等结构化参数
- 关联到具体业务对象(某个订单、某个项目)
做法包括:
- 基于模型的实体识别、槽位填充
- 加上领域词典、正则规则、历史上下文的补充
实战中,参数提取的准确率,直接决定后续工具调用、接口请求是否有效。
(2)意图识别与路由:咨询 vs 操作
“我想了解退款规则”和“帮我申请退款”,意图完全不同:
- 前者走问答流程(RAG)
- 后者要走退款业务流程(校验订单 → 判断规则 → 创建工单)
平台需要有一层意图分类与路由机制:
- 判断是“咨询类”还是“操作类”
- 对操作类再细分具体流程:查询类、修改类、创建类等
这类设计越清晰,后端流程越稳定,越不容易把“随便聊聊”当成真实操作。
(3)异常处理与回退:出错时怎么办?
真实系统不可能“次次成功”:
- 接口超时、鉴权失败
- 参数缺失、业务规则冲突
- 外部系统故障
平台需要为每个关键节点设计:
- 重试策略(重试几次、间隔多久)
- 回退路径(改走人工,还是请用户稍后再试)
- 用户反馈方式(解释清楚失败原因,而不是简单“出错了”)
这一块很考验“产品 sense”:既不夸大智能体的能力,也不把问题甩锅给用户。
2. 平台设计的两条哲学路径
围绕“对话”和“流程”,平台大致有两类路线。
(1)对话流与任务流分离
典型做法是:
- 把闲聊、问答放在一个通道(对话流)
- 把关键业务操作放在另一个通道(任务流)
优点:
- 安全边界清晰,业务流程实现可控
- 核心流程不容易被自由对话干扰
缺点:
- 体验上可能略显“割裂”,从聊天到操作有明显切换感
(2)一体化融合:用单一智能体调度一切
另一种思路是:
- 所有事情都通过一个智能体接口暴露出去
- 由模型+路由逻辑在内部决定:什么时候查知识、什么时候走流程、什么时候调用工具
优点:
- 体验顺滑,对用户来说就是“跟一个助手聊”
- 场景扩展比较自然
缺点:
- 实现复杂度高、测试成本大
- 安全和稳定性需要更多精细控制
大多数平台会在这两种路径之间找平衡:底层流程和接口高度结构化,上层交互尽量统一入口。
3. 当前共性技术瓶颈
- 用户意图本身是不稳定的:
- 说着说着就改需求
- 中途插入新的问题
- 把多个请求混在一句话里
- 参数之间的逻辑依赖复杂:
- 一个选择会影响后面可选项
- 时间、额度、身份等约束交织
在这种情况下,很多平台的工作流鲁棒性仍然不足:要么过于僵硬(稍微偏离就崩),要么过于宽松(容易走错分支)。
四、第三支柱:智能体(Agent)——让系统“自主决策”
Workflow 负责的是“预先定义好的流程”。但现实场景中有大量“不好预先画流程图”的任务,比如:
- “帮我策划一次北京三日亲子游”
- “帮我用公司过往新品上市节奏,评估这个产品大概应该什么时候推”
这类任务的共同特点是:开放、模糊、步骤不固定,这就是 Agent 发挥作用的地方。
1. Agent 的核心:动态规划与工具调用
(1)任务分解与规划
面对一句“帮我策划一次旅行”,一个具备 Agent 能力的平台要能自动完成:
- 识别关键维度:出发地、目的地、天数、预算、同行人群
- 分解子任务:
- 查天气和季节适合项目
- 查机酒价格和时间
- 生成每日行程和交通方案
- 确定执行顺序:先了解偏好 → 再做搜索 → 再生成方案
这里考验的是平台的“规划层”:既要利用模型的推理能力,又要用工程规则保证流程不会跑偏太远。
(2)工具调用与协同
规划出来之后,Agent 要能够:
- 按工具接口要求构造参数
- 合理安排多个工具调用的先后顺序
- 把前一个工具的输出转换成后一个工具的输入
典型难点包括:
- 多轮工具调用中,如何保持“任务上下文”的连贯
- 如何避免参数反复询问用户(过度打扰)
这部分如果没有好的抽象,很容易变成“到处是 if-else”的灾难。
2. 工具生态的构建模式
(1)深度集成原生工具
对企业来说,真正关键的往往是:
- 内部文档系统、审批系统
- CRM、ERP、财务、风控系统
- 自研地图、调度、监控工具
平台如果能够与这些系统原生深度集成,智能体就能像老员工一样“熟练使用公司软件”,而不是只会帮你写写文案。
(2)标准化插件架构
另一方面,企业也离不开各种第三方能力:
- 支付、物流、地图、电商
- 各类 SaaS 工具
面向开发者,一个好的平台会给出:
- 统一的工具/插件规范(参数声明、鉴权方式、错误码)
- 可视化或低代码的接入方式
- 版本管理和灰度发布机制
这决定了生态能长多快、多稳。
3. 当前共性技术瓶颈
哪怕工具列表已经很齐全,仍然会遇到几个老大难:
- 工具调用稳定性:
- 接口鉴权配置复杂,容易出错
- 超时、限流、网络抖动的处理不到位
- 复杂协同易断裂:
- 上一个工具返回的字段名或结构变化,后一个工具就接不上
- 中间某步失败了,没有好的局部重试和补偿机制
这些问题在多步骤、跨系统的复杂场景下尤其明显,也是当下很多平台“Demo 很惊艳,上线就翻车”的根源所在。
五、技术整合挑战与未来演进方向
单看 RAG、Workflow、Agent,每一块都有成熟思路。但真正落地时,会遇到一个终极问题:
怎么把三块拼成一个“整体好用”的系统,而不是三堆孤立的技术组件?
1. 三大支柱的协同困境
(1)RAG → Workflow → Agent 的信息流
一个真实案例可能是这样的:
- 智能体先用 RAG 查了一堆内部政策和历史案例
- 再根据结果决定走哪个工作流分支
- 在工作流过程中按需调用多个工具
问题在于:
- RAG 的检索结果如何让工作流“可编排”?不能只是模型“读一读就算了”。
- 工作流的状态和中间数据,如何回流给 Agent,用于下一步规划?
这本质上要求平台有一套统一的状态管理和上下文表达,而不是各自为政。
(2)工作流的“刚性” vs Agent 的“灵活”
企业希望:
- 流程要可控、可审计、可复盘(偏刚性)
- 智能体要灵活、能随机应变(偏灵活)
在同一个系统里平衡这两点,是一个架构层面的长期课题。直观做法包括:
- 把关键决策节点“结构化”,让模型在“规则框架内”做选择
- 为 Agent 设定明确的“权限边界”和可见信息范围
2. 未来演进的几个关键点
(1)评估体系标准化
没有可靠的评估体系,一切“效果很好”都是主观感受。未来平台竞争的一部分,会落在:
- 针对 RAG 的评估:检索准确率、回答忠实度
- 针对 Workflow 的评估:流程成功率、异常恢复能力、平均处理时长
- 针对 Agent 的评估:工具调用成功率、多步任务完成率
谁能把这些评估指标标准化、产品化,谁就更有底气对外宣称“平台能力”。
(2)原子能力模块化:做成“乐高积木”
RAG、规划、工具调用、意图识别、参数抽取……这些都可以进一步拆成“原子能力”:
- 每个原子能力:
- 有清晰的输入输出
- 有可观测的效果指标
- 可以被不同上层场景复用
对平台厂商来说,能否把这些能力做成“积木”,直接决定扩展效率;对开发者来说,这决定了是不是能把自己的业务逻辑搭得既快又稳。
(3)人机协同设计:哪里该让人来接管?
真正成熟的系统,会非常坦然地承认:
有些地方机器干不好,就应该设计“让人接管”。
典型的协同点包括:
- 高风险操作前的人工审核
- 模型不确定性高时的人工确认
- 异常情况的人工仲裁和回溯
关键不是“机器做多少,人做多少”,而是:
- 在什么节点引入人
- 怎么把上下文和建议展示给人
- 人的决策如何再回流给系统,成为之后的学习样本
六、总结
如果要用一句话概括智能体开发平台的竞争本质:
比的已经不是“谁的模型更会聊天”,而是谁能用更好的工程化和架构设计,把大模型的不确定性牢牢装进一个确定的业务框架里。
RAG 决定了“知识边界”,Workflow 决定了“流程边界”,Agent 决定了“自主程度边界”。三者如何在一个平台中优雅协同,很大程度上决定了:
- 这个平台是“好看的 Demo”,还是“靠谱的生产力工具”
- 是“几个场景能用用”,还是能支撑企业核心业务的长期演进
对开发者和技术负责人来说,选平台时值得重点关注的,已经不只是“模型分数”,而是:
- RAG 是否工程化到可控、可观测
- 工作流是否经得住频繁变更和复杂异常
- Agent 能否在明确的边界内进行可靠的自主决策
- 最终有没有形成一套清晰的评估、监控与迭代闭环
真正能穿越这些技术深水区的平台,才有机会成为下一阶段产业智能化的基础设施,而不仅仅是又一轮“AI 概念”浪潮中的过客。
学AI大模型的正确顺序,千万不要搞错了
🤔2026年AI风口已来!各行各业的AI渗透肉眼可见,超多公司要么转型做AI相关产品,要么高薪挖AI技术人才,机遇直接摆在眼前!
有往AI方向发展,或者本身有后端编程基础的朋友,直接冲AI大模型应用开发转岗超合适!
就算暂时不打算转岗,了解大模型、RAG、Prompt、Agent这些热门概念,能上手做简单项目,也绝对是求职加分王🔋

📝给大家整理了超全最新的AI大模型应用开发学习清单和资料,手把手帮你快速入门!👇👇
学习路线:
✅大模型基础认知—大模型核心原理、发展历程、主流模型(GPT、文心一言等)特点解析
✅核心技术模块—RAG检索增强生成、Prompt工程实战、Agent智能体开发逻辑
✅开发基础能力—Python进阶、API接口调用、大模型开发框架(LangChain等)实操
✅应用场景开发—智能问答系统、企业知识库、AIGC内容生成工具、行业定制化大模型应用
✅项目落地流程—需求拆解、技术选型、模型调优、测试上线、运维迭代
✅面试求职冲刺—岗位JD解析、简历AI项目包装、高频面试题汇总、模拟面经
以上6大模块,看似清晰好上手,实则每个部分都有扎实的核心内容需要吃透!
我把大模型的学习全流程已经整理📚好了!抓住AI时代风口,轻松解锁职业新可能,希望大家都能把握机遇,实现薪资/职业跃迁~
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

更多推荐

所有评论(0)