GLM-4.6V多模态模型能将PDF论文转换为图文混排解读文章,模型可精确识别图片位置(千分位坐标),一次性处理大量图片并支持持续优化。作者通过逆向工程复刻了该功能,展示了GLM-4.6V作为原生Agent的"看"信息能力,为构建AI智能体提供了新思路。


上周是智谱的多模态开源周,从GLM 4.6v到Autoglm…

看到官方的博客,第一眼比较吸引我的,不是模型本身,是他们给的一个使用场景 - 图文并排

上传一份 PDF 论文,它能生成一篇图文混排的解读文章,而且效果非常好。图片位置精准,上下文衔接自然,完全不像是机械拼接的。

过去我们想做图文混排,都是预定义一些图片,让多模态大模型生成描述,再让LLM在写文章时结合图片描述,选择合适的图片url。

流程繁琐,效果一般(主要是模型看不到这些图)。

太久没用过多模态大模型了,感觉时代似乎变了~

Z.ai 已经上线了这个能力,所以我逆向了一下原理,复刻了一下,有不少收获,给家人们分享一下。

GLM 4.6V 是一个多模态原生智能体

我们可以看一下下边的视频。大概的步骤是,模型会先生成一个带工具槽位的初版,然后进行图片引用,调用裁剪工具,捞回来图片,最后完成终稿的撰写。

其实从Z.ai 服务请求日志,也可以看到具体的工具调用信息。

相当于类似一个ReAct Agent,调用工具截图相当于获取到observation,然后进行下一步的Action。

如果想做一个自由度没这么高的一个架构,类似下图:

基于这个模式,我复刻了一套代码。结果跟ZAI跑出来的结果基本一致。重点是复刻过程中,我发现了几个非常有意思的点,后文会详细介绍一下。

跑一篇20页的论文,大概消耗1毛5的样子。如果用量比较多,可以考虑智谱的 GLM Coding Plan,20 元包月起,用量是同价位 Claude Code 的三倍。而且官方提供了一系列适配4.6v的MCP, 使用起来会更顺手。

三个有意思的能力

模型知道图片的精确位置

这是Glm4.6V 最让我惊讶的能力。模型不仅能理解图片内容,还能输出图片在页面上的坐标,比如前面调用图片裁剪工具,我让模型输出的格式如下:

[页码, [[x1, y1, x2, y2]], "图片标题"]

需要注意的是:模型的输出坐标是千分位坐标(0-999 范围),需要按比例转换成像素坐标。 当然如果用官方mcp tools没这个烦恼。

def thousandth_to_pixel(coord, image_width, image_height):    """千分位坐标转像素坐标"""    x1 = int(coord[0] / 1000 * image_width)    y1 = int(coord[1] / 1000 * image_height)    x2 = int(coord[2] / 1000 * image_width)    y2 = int(coord[3] / 1000 * image_height)    return [x1, y1, x2, y2]

为什么是千分位?因为不同分辨率的图片,像素坐标会变,但千分位坐标是相对的,更具通用性。

一次输入几十张图片

一篇 20 页的 PDF,转成图片后全部塞进去,模型能完整理解,128k确实不是吹的。

这让我想起不久前智谱的另一个工作Glyph:把文本渲染成图片,让视觉 token 承载更多信息。

传统的 token 扩展方式已经走到算力成本的天花板。与其硬扛百万级token的计算压力,不如让 AI看文字,而不是读文字。

所以过去我们头痛的解析、分块等操作,随着多模态模型的变强,似乎迎刃而解了。

可以基于裁剪结果持续迭代

获取到裁剪后的图片之后,如果只是简单的字符串替换,直接正则就够了。

但如果用VLM,在第二轮可以验证裁剪是不是正确,可以调整图片周围的文字,可以优化图文的排版位置。

GLM-4.6V 就是一个原生的 Agent。

AI大模型从0到精通全套学习大礼包

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

只要你是真心想学AI大模型,我这份资料就可以无偿共享给你学习。大模型行业确实也需要更多的有志之士加入进来,我也真心希望帮助大家学好这门技术,如果日后有什么学习上的问题,欢迎找我交流,有技术上面的问题,我是很愿意去帮助大家的!

如果你也想通过学大模型技术去帮助就业和转行,可以扫描下方链接👇👇
大模型重磅福利:入门进阶全套104G学习资源包免费分享!

在这里插入图片描述

01.从入门到精通的全套视频教程

包含提示词工程、RAG、Agent等技术点
在这里插入图片描述

02.AI大模型学习路线图(还有视频解说)

全过程AI大模型学习路线

在这里插入图片描述
在这里插入图片描述

03.学习电子书籍和技术文档

市面上的大模型书籍确实太多了,这些是我精选出来的

在这里插入图片描述
在这里插入图片描述

04.大模型面试题目详解

在这里插入图片描述

在这里插入图片描述

05.这些资料真的有用吗?

这份资料由我和鲁为民博士共同整理,鲁为民博士先后获得了北京清华大学学士和美国加州理工学院博士学位,在包括IEEE Transactions等学术期刊和诸多国际会议上发表了超过50篇学术论文、取得了多项美国和中国发明专利,同时还斩获了吴文俊人工智能科学技术奖。目前我正在和鲁博士共同进行人工智能的研究。

所有的视频由智泊AI老师录制,且资料与智泊AI共享,相互补充。这份学习大礼包应该算是现在最全面的大模型学习资料了。

资料内容涵盖了从入门到进阶的各类视频教程和实战项目,无论你是小白还是有些技术基础的,这份资料都绝对能帮助你提升薪资待遇,转行大模型岗位。

在这里插入图片描述
在这里插入图片描述

智泊AI始终秉持着“让每个人平等享受到优质教育资源”的育人理念‌,通过动态追踪大模型开发、数据标注伦理等前沿技术趋势‌,构建起"前沿课程+智能实训+精准就业"的高效培养体系。

课堂上不光教理论,还带着学员做了十多个真实项目。学员要亲自上手搞数据清洗、模型调优这些硬核操作,把课本知识变成真本事‌!

在这里插入图片描述
如果说你是以下人群中的其中一类,都可以来智泊AI学习人工智能,找到高薪工作,一次小小的“投资”换来的是终身受益!

应届毕业生‌:无工作经验但想要系统学习AI大模型技术,期待通过实战项目掌握核心技术。

零基础转型‌:非技术背景但关注AI应用场景,计划通过低代码工具实现“AI+行业”跨界‌。

业务赋能 ‌突破瓶颈:传统开发者(Java/前端等)学习Transformer架构与LangChain框架,向AI全栈工程师转型‌。

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

Logo

有“AI”的1024 = 2048,欢迎大家加入2048 AI社区

更多推荐