train_608_736.py cursor0126 v1 尽可能加载
return img, mask# 这里改了, 在__getitem__里再调用self._mask_transform(mask)long_size = max(min_long, min(max_long, long_size))# 夹紧到允许范围。scale = long_size / max(w, h)# 不再强制截断到<=1,允许轻微上采样以贴近 2cm/px。jitter = min(
import argparse
import logging
import math
import os
import random
import time
from copy import deepcopy
from pathlib import Path
from threading import Thread
from itertools import cycle
import numpy as np
import torch.distributed as dist
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torch.optim.lr_scheduler as lr_scheduler
import torch.utils.data
try:
from thop import profile # optional, for MACs computation
except ImportError:
profile = None
import yaml
from torch.cuda import amp
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.tensorboard import SummaryWriter
from tqdm import tqdm
# import torch.ao.quantization as quantizer
import test # import test.py to get mAP after each epoch
from models.experimental import attempt_load
from models.yolo import Model
from utils.autoanchor import check_anchors
from utils.datasets import create_dataloader #datasets
from utils.general import labels_to_class_weights, increment_path, labels_to_image_weights, init_seeds, \
fitness, fitness2, strip_optimizer, get_latest_run, check_dataset, check_file, check_git_status, check_img_size, \
check_requirements, print_mutation, set_logging, one_cycle, colorstr
from utils.google_utils import attempt_download
from utils.loss import ComputeLoss, SegmentationLosses, SegFocalLoss, OhemCELoss, ProbOhemCrossEntropy2d,PoseLoss
from utils.plots import plot_images, plot_labels, plot_results, plot_evolution
from utils.torch_utils import ModelEMA, select_device, intersect_dicts, torch_distributed_zero_first, is_parallel
from utils.wandb_logging.wandb_utils import WandbLogger, check_wandb_resume
import SegmentationDataset
import torch.backends.cudnn as cudnn
logger = logging.getLogger(__name__)
def report_macs(model, device, sizes=((800, 800), (736, 608))):
"""Compute MACs for given input sizes using thop."""
if profile is None:
logger.error("thop is not installed. Install with: pip install thop")
return
model.eval()
with torch.no_grad():
for h, w in sizes:
dummy = torch.zeros(1, 3, h, w, device=device)
macs, params = profile(model, inputs=(dummy,), verbose=False)
logger.info(f"MACs @ {h}x{w}: {macs / 1e9:.3f} GMACs, Params: {params / 1e6:.3f} M")
del dummy
model.train()
def train(hyp, opt, device, tb_writer=None):
logger.info(colorstr('hyperparameters: ') + ', '.join(f'{k}={v}' for k, v in hyp.items())) # 打印超参数
save_dir, epochs, batch_size, total_batch_size, weights, rank = \
Path(opt.save_dir), opt.epochs, opt.batch_size, opt.total_batch_size, opt.weights, opt.global_rank
# Directories
wdir = save_dir / 'weights'
wdir.mkdir(parents=True, exist_ok=True) # make dir
last = wdir / 'last.pt'
best = wdir / 'best.pt'
results_file = save_dir / 'results.txt'
# eponh = wdir / ('last_' + str(1) + '.pth')
# Save run settings # 存超参数和优化器参数, 优化器参数,可用于resume
with open(save_dir / 'hyp.yaml', 'w') as f:
yaml.dump(hyp, f, sort_keys=False)
with open(save_dir / 'opt.yaml', 'w') as f:
yaml.dump(vars(opt), f, sort_keys=False)
# Configure
plots = not opt.evolve # create plots 不进化就画图
cuda = device.type != 'cpu'
init_seeds(2 + rank)
with open(opt.data) as f:
data_dict = yaml.load(f, Loader=yaml.SafeLoader) # data dict
is_coco = opt.data.endswith('coco.yaml')
# Logging- Doing this before checking the dataset. Might update data_dict
loggers = {'wandb': None} # loggers dict
if rank in [-1, 0]: # -1不开DDP, 0是DDP主进程
opt.hyp = hyp # add hyperparameters
run_id = torch.load(weights).get('wandb_id') if weights.endswith('.pt') and os.path.isfile(weights) else None
wandb_logger = WandbLogger(opt, Path(opt.save_dir).stem, run_id, data_dict)
loggers['wandb'] = wandb_logger.wandb
data_dict = wandb_logger.data_dict
if wandb_logger.wandb:
weights, epochs, hyp = opt.weights, opt.epochs, opt.hyp # WandbLogger might update weights, epochs if resuming
nc = 1 if opt.single_cls else int(data_dict['nc']) # number of classes
names = ['item'] if opt.single_cls and len(data_dict['names']) != 1 else data_dict['names'] # class names
assert len(names) == nc, '%g names found for nc=%g dataset in %s' % (len(names), nc, opt.data) # check
# Model
#修改开始
def _normalize_weight_paths(paths):
if not paths:
return []
if isinstance(paths, (list, tuple)):
items = []
for p in paths:
items.extend([x.strip() for x in str(p).split(',') if x.strip()])
return items
return [x.strip() for x in str(paths).split(',') if x.strip()]
def _extract_state_dict(ckpt_obj):
if isinstance(ckpt_obj, dict):
if 'model' in ckpt_obj and hasattr(ckpt_obj['model'], 'state_dict'):
return ckpt_obj['model'].float().state_dict()
if 'state_dict' in ckpt_obj:
return ckpt_obj['state_dict']
if hasattr(ckpt_obj, 'state_dict'):
return ckpt_obj.state_dict()
raise ValueError('Unsupported checkpoint format')
def _load_one_weights(model, ckpt_path, exclude):
ckpt = torch.load(ckpt_path, map_location=device)
state_dict = _extract_state_dict(ckpt)
state_dict = intersect_dicts(state_dict, model.state_dict(), exclude=exclude)
if not opt.strict_load:
filtered_state, skipped = {}, []
model_state = model.state_dict()
for k, v in state_dict.items():
if k in model_state and model_state[k].shape == v.shape:
filtered_state[k] = v
else:
skipped.append(k)
if skipped:
logger.warning(f"Skip loading {len(skipped)} mismatched keys (showing first 5): {skipped[:5]}")
state_dict = filtered_state
model.load_state_dict(state_dict, strict=False)
logger.info('Transferred %g/%g items from %s' % (len(state_dict), len(model.state_dict()), ckpt_path))
weight_paths = _normalize_weight_paths(weights)
extra_paths = _normalize_weight_paths(getattr(opt, 'extra_weights', ''))
all_weight_paths = weight_paths + extra_paths
pretrained = len(all_weight_paths) > 0 # 有weights输入就用其初始化
if pretrained: # 有预训练参数
with torch_distributed_zero_first(rank):
for p in all_weight_paths:
attempt_download(p) # download if not found locally
ckpt = torch.load(all_weight_paths[0], map_location=device) # load checkpoint for cfg
# 路线1:如果希望完全继承旧结构,优先使用ckpt自带的yaml 修改
ckpt_model = ckpt.get('model', None) if isinstance(ckpt, dict) else None
ckpt_yaml = ckpt_model.yaml if (ckpt_model is not None and hasattr(ckpt_model, 'yaml')) else None
model_yaml = ckpt_yaml if (opt.prefer_ckpt_cfg and ckpt_yaml) else (opt.cfg or ckpt_yaml)
model = Model(model_yaml, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create
exclude = ['anchor'] if (opt.cfg or hyp.get('anchors')) and not opt.resume else [] # exclude keys 初始化时候不使用的参数(非resume且有配置时按cfg和model初始化来指定anchor, 否则延用pretrained weights的anchor)
for p in all_weight_paths:
_load_one_weights(model, p, exclude)
# 可选:仅计算MACs后退出
if opt.calc_macs:
if rank in [-1, 0]:
report_macs(model, device)
return (0, 0, 0, 0, 0, 0, 0)
#修改结束
else: # 无预训练参数,只建模型
model = Model(opt.cfg, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create
if opt.calc_macs:
if rank in [-1, 0]:
report_macs(model, device)
return (0, 0, 0, 0, 0, 0, 0)
with torch_distributed_zero_first(rank):
check_dataset(data_dict) # check
train_path = data_dict['train']
test_path = data_dict['val']
segtrain_path = data_dict['segtrain']
segval_path = data_dict['segval']
seg_rm_train_path = data_dict['seg_rm_train']
seg_rm_val_path = data_dict['seg_rm_val']
# Freeze 要冻结的参数 似乎只能在此代码处手动设置列表
freeze = [] # parameter names to freeze (full or partial)
for k, v in model.named_parameters():
v.requires_grad = True # train all layers 全部参数可导
if any(x in k for x in freeze): # 碰见freeze列表的层使其参数不可导
print('freezing %s' % k)
v.requires_grad = False
# Optimizer
nbs = 64 # nominal batch size
accumulate = max(round(nbs / total_batch_size), 1) # accumulate loss before optimizing
hyp['weight_decay'] *= total_batch_size * accumulate / nbs # scale weight_decay 权重衰减系数
logger.info(f"Scaled weight_decay = {hyp['weight_decay']}")
# 参数分组,pg0是BN,pg1是权重,pg2是偏置
pg0, pg1, pg2 = [], [], [] # optimizer parameter groups
for k, v in model.named_modules():
if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter):
pg2.append(v.bias) # biases
if isinstance(v, nn.BatchNorm2d):
pg0.append(v.weight) # no decay
elif hasattr(v, 'weight') and isinstance(v.weight, nn.Parameter):
pg1.append(v.weight) # apply decay
# 优化器初始化, BN层参数不带权重衰减
if opt.adam:
optimizer = optim.Adam(pg0, lr=hyp['lr0'], betas=(hyp['momentum'], 0.999)) # adjust beta1 to momentum
else:
optimizer = optim.SGD(pg0, lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True)
# 权重参数, 带权重衰减
optimizer.add_param_group({'params': pg1, 'weight_decay': hyp['weight_decay']}) # add pg1 with weight_decay
# 偏置参数, 同样不带衰减
optimizer.add_param_group({'params': pg2}) # add pg2 (biases)
logger.info('Optimizer groups: %g .bias, %g conv.weight, %g other' % (len(pg2), len(pg1), len(pg0)))
del pg0, pg1, pg2
# Scheduler https://arxiv.org/pdf/1812.01187.pdf 设置好优化器后用其设置Learning Scheduler
# https://pytorch.org/docs/stable/_modules/torch/optim/lr_scheduler.html#OneCycleLR
if opt.linear_lr:
lf = lambda x: (1 - x / (epochs - 1)) * (1.0 - hyp['lrf']) + hyp['lrf'] # linear
else:
lf = one_cycle(1, hyp['lrf'], epochs) # cosine 1->hyp['lrf']
scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf) # 自定义lambda函数学习率衰减策略
# plot_lr_scheduler(optimizer, scheduler, epochs)
# EMA 指数滑动平均
ema = ModelEMA(model) if rank in [-1, 0] else None
# Resume
start_epoch, best_fitness = 0, 0.0
if pretrained:
# Optimizer
if ckpt['optimizer'] is not None:
optimizer.load_state_dict(ckpt['optimizer'])
best_fitness = ckpt['best_fitness']
# EMA 指数平均
if ema and ckpt.get('ema'):
ema.ema.load_state_dict(ckpt['ema'].float().state_dict())
ema.updates = ckpt['updates']
# Results
if ckpt.get('training_results') is not None:
results_file.write_text(ckpt['training_results']) # write results.txt
# Epochs
start_epoch = ckpt['epoch'] + 1 # 预训练模型的epoch是-1
if opt.resume: # resume参数epoch应该大于0
assert start_epoch > 0, '%s training to %g epochs is finished, nothing to resume.' % (weights, epochs)
if epochs < start_epoch: # 总轮数比开始轮还小, 总轮数加上已训练轮(即再训练总轮数次而不是通常的 总轮数-开始轮 次)
logger.info('%s has been trained for %g epochs. Fine-tuning for %g additional epochs.' %
(weights, ckpt['epoch'], epochs))
epochs += ckpt['epoch'] # finetune additional epochs
del ckpt, state_dict
# Image sizes
gs = max(int(model.stride.max()), 32) # grid size (max stride) 至少32
nl = model.model[-1].nl # number of detection layers (used for scaling hyp['obj']) model最后一层是Detect, nl是其输出层数量
imgsz, imgsz_test = [check_img_size(x, gs) for x in opt.img_size] # verify imgsz are gs-multiples 检查图片尺寸是否合法,不合法就自动替换
# DP mode DP多线程数据并行模式, 不使用, 并行推荐DDP多进程
if cuda and rank == -1 and torch.cuda.device_count() > 1:
model = torch.nn.DataParallel(model)
# SyncBatchNorm 跨卡BN, 仅支持DDP
if opt.sync_bn and cuda and rank != -1:
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
logger.info('Using SyncBatchNorm()')
# 检测 Trainloader
dataloader, dataset = create_dataloader(train_path, imgsz, batch_size, gs, opt,
hyp=hyp, augment=True, cache=opt.cache_images, rect=opt.rect, rank=rank,
world_size=opt.world_size, workers=opt.workers,
image_weights=opt.image_weights, quad=opt.quad, prefix=colorstr('train: '))
mlc = np.concatenate(dataset.labels, 0)[:, 0].max() # max label class 纵向连接了标签后找第一列最大值, mlc的值就是类别数-1
nb = len(dataloader) # number of batches
# mlc=实际标签类别数-1 应该小于 nc模型结构支持的前景类别数 (不用等式关系, 因为结构类别多的模型可以支持训练标签类别少的数据, 反之不成立)
print(mlc)
print(nc)
assert mlc < nc, 'Label class %g exceeds nc=%g in %s. Possible class labels are 0-%g' % (mlc, nc, opt.data, nc - 1)
# Process 0 非DDP或DDP中的主进程
if rank in [-1, 0]:
testloader = create_dataloader(test_path, imgsz_test, batch_size * 2, gs, opt, # testloader batch_size翻倍
hyp=hyp, cache=opt.cache_images and not opt.notest, rect=True, rank=-1,
world_size=opt.world_size, workers=opt.workers,
pad=0.5, prefix=colorstr('val: '))[0] # [0]只要了loader没要dataset, 和train处理不一样
if not opt.resume: # 常规, 非resume
labels = np.concatenate(dataset.labels, 0)
c = torch.tensor(labels[:, 0]) # classes 所有对象类别(包括所有目标,不是图像)
# cf = torch.bincount(c.long(), minlength=nc) + 1. # frequency
# model._initialize_biases(cf.to(device))
if plots:
plot_labels(labels, names, save_dir, loggers)
if tb_writer:
tb_writer.add_histogram('classes', c, 0) #
# Anchors
if not opt.noautoanchor: # 用train dataset自动聚类选取最好anchor
check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz) # anchor_t是最大放大倍数,yolov5公式不同于v3v4, 见核心Model推理时anchor偏移放缩公式和issue
model.half().float() # pre-reduce anchor precision 先转float16再转回32,虽然type是32,但此时参数的数值范围限到16了
# 分割 loader citys和bdd的basesize都取1024,crop_size长边取imgsz,短边imgsz砍半
seg_valloader = SegmentationDataset.get_custom_loader(root=segval_path, batch_size=int(batch_size + 4),
split="val", mode="val", # 旧版为val新版训练中验证也用testval模式
base_size=imgsz, # 对cityscapes, 原图resize到(1024, 512)输入后双线性插值到原图尺寸计算精度
# crop_size=640, # testval 时候cropsize不起作用
workers=8, pin=True) # 验证batch_size和workers得配合, 都太大会导致子进程死亡, 单进程龟速加载数据
# 我电脑上(4,4)是最快的, 更大子进程会挂(现在图大了,怎么设都会挂, BUG)
seg_rm_val_dataloder = SegmentationDataset.get_rm_loader(root=seg_rm_val_path, batch_size=int(batch_size * 2),
split="val", mode="val", # 旧版为val新版训练中验证也用testval模式
base_size=imgsz, # 对cityscapes, 原图resize到(1024, 512)输入后双线性插值到原图尺寸计算精度
workers=8, pin=True)
seg_trainloader = SegmentationDataset.get_custom_loader(root=segtrain_path,
split="train", mode="train",
base_size=imgsz,
batch_size=int(batch_size - 8),
workers=opt.workers, pin=True)
seg_rm_train_dataloder = SegmentationDataset.get_rm_loader(root=seg_rm_train_path,
split="train", mode="train",
base_size=imgsz,
batch_size=int(batch_size + 24),
workers=opt.workers, pin=True)
segnb = len(seg_trainloader)
seg_rm_nb = len(seg_rm_train_dataloder)
print(nb)
print(segnb)
print(seg_rm_nb)
# DDP mode
if cuda and rank != -1: # 没禁用(-1)就开DDP模型
model = DDP(model, device_ids=[opt.local_rank], output_device=opt.local_rank,
# nn.MultiheadAttention incompatibility with DDP https://github.com/pytorch/pytorch/issues/26698
find_unused_parameters=any(isinstance(layer, nn.MultiheadAttention) for layer in model.modules()))
# Model parameters 根据输出层数,类别数等调整损失增益,模型超参数
hyp['box'] *= 3. / nl # scale to layers
hyp['cls'] *= nc / 7. * 3. / nl # scale to classes and layers 80
hyp['obj'] *= (imgsz / 736) ** 2 * 3. / nl # scale to image size and layers 640
hyp['label_smoothing'] = opt.label_smoothing
model.nc = nc # attach number of classes to model
model.hyp = hyp # attach hyperparameters to model
model.gr = 1.0 # iou loss ratio (obj_loss = 1.0 or iou)
model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc # attach class weights
model.names = names
# Start training
t0 = time.time()
nw = max(round(hyp['warmup_epochs'] * nb), 800) # number of warmup iterations, max(3 epochs, 1k iterations) 最少warmup三轮或500batch(原版1000,800就够了)
# nw = min(nw, (epochs - start_epoch) / 2 * nb) # limit warmup to < 1/2 of training
maps = np.zeros(nc) # mAP per class
results = (0, 0, 0, 0, 0, 0, 0) # P, R, mAP@.5, mAP@.5-.95, val_loss(box, obj, cls)
scheduler.last_epoch = start_epoch - 1 # do not move 配置lr_scheduler起始位置
scaler = amp.GradScaler(enabled=cuda) # 说明不是float16训练,而是16和32混合精度训练. 训练前初始化loss scaler 用于float16放大梯度后backward, optimizer.step之前自动转float32再缩回来
compute_loss = PoseLoss(model) # init loss class 初始化检测criteria PoseLoss ComputeLoss
#-----------------------------------------------------------------------------------------------------------
# deeplab早期版本(无ohem)中对cityscapes数据集设定的weights,可用,非必要,现代更常用ohem,但目前ohem实验略差一点
# citys_class_weight=torch.tensor([0.8373, 0.9180, 0.8660, 1.0345, 1.0166,
# 0.9969, 0.9754, 1.0489, 0.8786, 1.0023,
# 0.9539, 0.9843, 1.1116, 0.9037, 1.0865,
# 1.0955, 1.0865, 1.1529, 1.0507])
citys_class_weight = None
# 无aux模型输出不用[],有aux几个结果输出用[]包装
# Base,PSP和Lab用这个,无aux
# compute_seg_loss = SegmentationLosses(aux=False, ignore_index=-1, weight=citys_class_weight).cuda()#SegFocalLoss(ignore_index=-1, gamma=1, reduction="mean").cuda()
# BiSe用这个 两个aux
# compute_seg_loss = SegmentationLosses(nclass=19, aux=True, aux_num=2, aux_weight=0.1, ignore_index=-1, weight=citys_class_weight).cuda()
# 一个aux,没有用这个
# compute_seg_loss = SegmentationLosses(nclass=19, aux=True, aux_num=1, aux_weight=0.1, ignore_index=-1, weight=citys_class_weight).cuda()
#-----------------------------------------------------------------------------------------------------------
# focalloss别用,cityscapes效果不行
# OHEM能用,理论上应该超过CE,但是目前实验效果不如CE(设成默认0.7收敛蛮快的但最终值不够好),认为与计算像素个数和学习率有关,用的话循环损失计算的语句得改一下,接口和CE还没来得及保持一致
compute_seg_loss = OhemCELoss(thresh=0.7, ignore_index=-1, aux=False).cuda()
# compute_seg_loss = OhemCELoss(thresh=0.7, ignore_index=-1, aux=True, aux_weight=[0.15, 0.1])
detgain, seggain , segrm_gain = 0.45, 0.10 ,0.45 # 检测, 分割比例
# CE、1/8单输入、batchsize13用0.65,0.35左右,注意64向下取整的梯度积累,比13*4=52大(12*5=64)通常应该降低分割损失比例或调小学习率
logger.info(f'Image sizes {imgsz} train, {imgsz_test} test\n'
f'Using {dataloader.num_workers} dataloader workers\n'
f'Logging results to {save_dir}\n'
f'Starting training for {epochs} epochs...')
for epoch in range(start_epoch, epochs): # epoch ------------------------------------------------------------------
mIoU = 0 # 每轮开始mIoU设置成0,因为选模型按mIoU选,为了加速训练可能n轮才测一次mIoU,对没测mIoU的模型不会存为best.pt
mIoU_rm = 0
print(f'accumulate: {accumulate}') # 显示epoch开始时梯度积累次数(第一个值忽略, 注意warmup期间按batch变化, 此处只是辅助观察防梯度爆炸)
model.train() # epoch开始, 确保train模式 注意validation时候可能会把模型.eval()因此开始的train()很有必要
# Update image weights (optional) 更新image_weights权重, 默认不开image_weights忽略此块代码
if opt.image_weights:
# Generate indices
if rank in [-1, 0]:
cw = model.class_weights.cpu().numpy() * (1 - maps) ** 2 / nc # class weights
iw = labels_to_image_weights(dataset.labels, nc=nc, class_weights=cw) # image weights
dataset.indices = random.choices(range(dataset.n), weights=iw, k=dataset.n) # rand weighted idx
# Broadcast if DDP
if rank != -1:
indices = (torch.tensor(dataset.indices) if rank == 0 else torch.zeros(dataset.n)).int()
dist.broadcast(indices, 0)
if rank != 0:
dataset.indices = indices.cpu().numpy()
# Update mosaic border
# b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
# dataset.mosaic_border = [b - imgsz, -b] # height, width borders
#冻结网络所有参数
# if epoch == start_epoch:
# print("冻结骨干,冻结检测分支,只训练分割分支")
# freeze = ['0','1','2','3','4','5','6','7','8','9',
# '10','11','12','13','14','15','16','17','18','19','20','21','22','23','25'] # parameter names to freeze (full or partial)
# for k, v in model.named_parameters():
# # v.requires_grad = True # train all layers 全部参数可导
# for x in freeze:
# if k.split('.')[1] == x: # 碰见freeze列表的层使其参数不可导
# print('freezing %s' % k)
# v.requires_grad = False
# break
mloss = torch.zeros(5, device=device) # 检测 mean losses
msegloss = torch.zeros(1, device=device) # 混合的 mean losses, 两者计算也可知分割loss
if rank != -1:
dataloader.sampler.set_epoch(epoch) # shuffle时, 保证每个epoch顺序不同
pbar = enumerate(dataloader)
segpbar = enumerate((seg_trainloader))
seg_rm_pbar = enumerate((seg_rm_train_dataloder))
# bar_closeground = enumerate(dataloader_closetmux)
logger.info(('\n' + '%10s' * 10) % ('Epoch', 'gpu_mem', 'box', 'obj', 'cls', 'pointloss','total', 'seg', 'labels', 'img_size'))
if rank in [-1, 0]:
pbar = tqdm(pbar, total=max(nb, segnb)) # progress bar # tqdm进度条迭代
segpbar = tqdm(segpbar, total=max(nb, segnb))
optimizer.zero_grad() # 每轮前清空梯度
# for det_batch, seg_batch in zip(pbar, segpbar): # batch -------------------------------------------------------------
# i, (imgs, targets, paths, _) = det_batch # 检测
# _, (segimgs, segtargets) = seg_batch # 分割
seg_dataloder = iter(segpbar)
seg_rm_dataloder = iter(seg_rm_pbar)
# det_clog_dataloder = iter(bar_closeground)
for det_batch in pbar:
i, (imgs, targets, paths, _) = det_batch # 检测
try:
_, (segimgs, segtargets) = next(seg_dataloder)
except StopIteration:
seg_dataloder = iter(enumerate((seg_trainloader)))
_, (segimgs, segtargets) = next(seg_dataloder)
try:
_, (seg_rm_imgs, seg_rm_targets) = next(seg_rm_dataloder)
except StopIteration:
seg_rm_dataloder = iter(enumerate((seg_rm_train_dataloder)))
_, (seg_rm_imgs, seg_rm_targets) = next(seg_rm_dataloder)
# torch.save(ckpt, last[-7] + 'last_' + str(epoch) + '.pth')
# imgs = torch.cat([imgs,imgs_clog],0)
# targets = torch.cat([targets,targets_clog],0)
# paths.extend(paths_clog)
# # 暂时用zip, 每轮batch数以数量少的为准
# for det_batch, seg_batch in zip(pbar, segpbar): # batch -------------------------------------------------------------
# i, (imgs, targets, paths, _) = det_batch # 检测
# _, (segimgs, segtargets) = seg_batch # 分割
if len(imgs)==1 or len(segimgs)==1 or len(seg_rm_imgs)==1: # 手动droplast,SE或者gloablpool后的bn不支持单个样本,检测loader调用地方太多不好droplast,这里手动
continue
# warmup等参数变化以检测为准
ni = i + nb * epoch # number integrated batches (since train start) 记录总iterations, 可以用于停止warmup
imgs = imgs.to(device, non_blocking=True).float() / 255.0 # uint8 to float32, 0-255 to 0.0-1.0
# Warmup
if ni <= nw:
xi = [0, nw] # x interp
# model.gr = np.interp(ni, xi, [0.0, 1.0]) # iou loss ratio (obj_loss = 1.0 or iou) # 修改了accumulate上限,使其不超过nbs(防止Nan)
accumulate = max(1, np.interp(ni, xi, [1, math.floor(nbs / total_batch_size)]).round()) # 梯度积累 线性插值xi=[0, 1000], yi=[1, 64/batchsize], 插入点x=ni, 之后取整, 最小限1. warmup时accumulate会逐渐从1按整数增大到目标, warmup结束后稳定在目标值 round(nbs/accumulate), 例如batchsize32实际上两batch才更新一次,等效于64
for j, x in enumerate(optimizer.param_groups): # warmup过程中逐渐把三组参数的lr调到lr0
# bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
x['lr'] = np.interp(ni, xi, [hyp['warmup_bias_lr'] if j == 2 else 0.0, x['initial_lr'] * lf(epoch)])
if 'momentum' in x:
x['momentum'] = np.interp(ni, xi, [hyp['warmup_momentum'], hyp['momentum']])
# Multi-scale 默认关multi scale
if opt.multi_scale:
sz = random.randrange(imgsz * 0.5, imgsz * 1.5 + gs) // gs * gs # size
sf = sz / max(imgs.shape[2:]) # scale factor
if sf != 1:
ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]] # new shape (stretched to gs-multiple)
imgs = F.interpolate(imgs, size=ns, mode='bilinear', align_corners=False)
# Forward and Backward 对比原版yolov5此处修改, 否则batchsize只能取单检测时候的一半, 这种写法可以更大一点
with amp.autocast(enabled=cuda): # 混合精度训练中用来代替autograd
pred = model(imgs) # forward
loss, loss_items = compute_loss(pred[0], targets.to(device)) # loss scaled by batch_size
if rank != -1: # DDP中loss * GPU数
loss *= opt.world_size # gradient averaged between devices in DDP mode
if opt.quad:
loss *= 4.
loss *= detgain # 检测loss比例
scaler.scale(loss).backward()
imgshape = imgs.shape[-1]
if plots and ni >= 3:
del imgs # 前三个batch画图不能del
else:
imgs = imgs.to(torch.device('cpu'), non_blocking=True) # 释放 segimgs输入后就没被调用会被pytorch自动回收不用手动释放(img后续有被调用要手动释放)
#fsd forward
segimgs = segimgs.to(device, non_blocking=True) # 分割已经做过totensor了, 不用/255
with amp.autocast(enabled=cuda): # 混合精度训练中用来代替autograd
pred = model(segimgs)
#-----------------------------------------------------------------------------------------------------------
# 无aux模型输出不用[],有aux模型几个结果输出用[]包装
# Base,PSP和Lab用这个,无aux
segloss = compute_seg_loss(pred[1][0], segtargets.to(device)) * (batch_size - 8) # 分割loss CE是平均loss, 配合检测做梯度积累, 因此乘以batchsize(注意有梯度积累其真实batchsize约是nbs=64)
# Bise用这个,两个aux
# segloss = compute_seg_loss(pred[1][0], pred[1][1], pred[1][2], segtargets.to(device)) * batch_size
# 一个aux,没有用这个
# segloss = compute_seg_loss(pred[1][0], pred[1][1], segtargets.to(device)) * batch_size
#-----------------------------------------------------------------------------------------------------------
segloss *= seggain
scaler.scale(segloss).backward()
del segimgs
#rm forward
seg_rm_imgs = seg_rm_imgs.to(device, non_blocking=True) # 分割已经做过totensor了, 不用/255
with amp.autocast(enabled=cuda): # 混合精度训练中用来代替autograd
pred_rm = model(seg_rm_imgs)
seg_rm_loss = compute_seg_loss(pred_rm[1][1], seg_rm_targets.to(device)) * (batch_size + 24)
seg_rm_loss *= segrm_gain
scaler.scale(seg_rm_loss).backward()
del seg_rm_imgs
# Optimize
if ni % accumulate == 0: # 梯度积累accumulate次后才优化,
scaler.step(optimizer) # optimizer.step # 混合精度训练优化时用scaler
scaler.update()
optimizer.zero_grad() # 每次更新完参数才清空梯度, 不更新时累计
if ema: # 不开DDP和DDP主进程中ema开启, 每次更新ema
ema.update(model)
if rank in [-1, 0]:
mloss = (mloss * i + loss_items) / (i + 1) # update mean losses
# msegloss = (msegloss * i + segloss.detach()/total_batch_size + seg_rm_loss.detach()/total_batch_size) / (i + 1)
msegloss = (msegloss * i + segloss.detach()/(batch_size - 8) + seg_rm_loss.detach()/(batch_size + 24)) / (i + 1)
mem = '%.3gG' % (torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0) # (GB)
s = ('%10s' * 2 + '%10.4g' * 8) % (
'%g/%g' % (epoch, epochs - 1), mem, *mloss, msegloss, targets.shape[0], imgshape)
pbar.set_description(s)
# Plot
if plots and ni < 3:
f = save_dir / f'train_batch{ni}.jpg' # filename
Thread(target=plot_images, args=(imgs, targets, paths, f), daemon=True).start()
# if tb_writer:
# tb_writer.add_image(f, result, dataformats='HWC', global_step=epoch)
# tb_writer.add_graph(torch.jit.trace(model, imgs, strict=False), []) # add model graph
elif plots and ni == 10 and wandb_logger.wandb:
wandb_logger.log({"Mosaics": [wandb_logger.wandb.Image(str(x), caption=x.name) for x in
save_dir.glob('train*.jpg') if x.exists()]})
# end batch ------------------------------------------------------------------------------------------------
# end epoch ----------------------------------------------------------------------------------------------------
# Scheduler
lr = [x['lr'] for x in optimizer.param_groups] # for tensorboard
scheduler.step() # 更新Scheduler
# DDP process 0 or single-GPU
if rank in [-1, 0]:
ema.update_attr(model, include=['yaml', 'nc', 'hyp', 'gr', 'names', 'stride', 'class_weights'])
# pixACC, mIoU
if epoch % 5 == 0 or (epochs - epoch) < 60:
mIoU = test.seg_validation(model=ema.ema, valloader=seg_valloader, device=device, n_segcls=2,
half_precision=True)
mIoU_rm = test.seg_validation(model=ema.ema, valloader=seg_rm_val_dataloder, device=device, n_segcls=14,
half_precision=True)
# mAP
final_epoch = epoch + 1 == epochs # 是否是最后一轮
if not opt.notest or final_epoch: # Calculate mAP
wandb_logger.current_epoch = epoch + 1
results, maps, times = test.test(data_dict,
batch_size=batch_size * 2,
imgsz=imgsz_test,
model=ema.ema,
single_cls=opt.single_cls,
dataloader=testloader,
save_dir=save_dir,
verbose=nc < 50 and final_epoch,
plots=plots and final_epoch,
wandb_logger=wandb_logger,
compute_loss=compute_loss,
is_coco=is_coco,
half_precision = True)
# Write
results = list(results)
results.append(mIoU)
results.append(mIoU_rm)
results.append(segloss)
results.append(seg_rm_loss)
results = tuple(results)
with open(results_file, 'a') as f:
f.write('%10.4g' * 11 % results + '\n') # append metrics, val_loss
if len(opt.name) and opt.bucket:
os.system('gsutil cp %s gs://%s/results/results%s.txt' % (results_file, opt.bucket, opt.name))
# Log
tags = ['train/box_loss', 'train/obj_loss', 'train/cls_loss', # train loss
'metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/mAP_0.5:0.95',
'val/box_loss', 'val/obj_loss', 'val/cls_loss', # val loss
'mIoU','mIoU_rm','segloss','seg_rm_loss' #segloss
'x/lr0', 'x/lr1', 'x/lr2'] # params
for x, tag in zip(list(mloss[:-1]) + list(results) + lr, tags): # 写tensorboard
if tb_writer:
tb_writer.add_scalar(tag, x, epoch) # tensorboard
if wandb_logger.wandb:
wandb_logger.log({tag: x}) # W&B
# Update best mIoU #mAP
results = torch.Tensor(list(results)).cpu()
# fi = fitness(np.array(results).reshape(1, -1)) # weighted combination of [P, R, mAP@.5, mAP@.5-.95] 按0.1*AP.5+0.9*AP.5:.95指标衡量模型
fi = fitness2(np.array(results).reshape(1, -1), mIoU) # weighted combination of [P, R, mAP@.5, mAP@.5-.95] 按0.1*AP.5+0.9*AP.5:.95指标衡量模型
fi_rm = fitness2(np.array(results).reshape(1, -1), mIoU_rm) # weighted combination of [P, R, mAP@.5, mAP@.5-.95] 按0.1*AP.5+0.9*AP.5:.95指标衡量模型
if fi_rm > best_fitness:
best_fitness = fi_rm
wandb_logger.end_epoch(best_result=best_fitness == fi_rm)
# Save model
if (not opt.nosave) or (final_epoch and not opt.evolve): # if save
ckpt = {'epoch': epoch,
'best_fitness': best_fitness,
'training_results': results_file.read_text(),
'model': deepcopy(model.module if is_parallel(model) else model).half(),
'ema': deepcopy(ema.ema).half(),
'updates': ema.updates,
'optimizer': optimizer.state_dict(),
'wandb_id': wandb_logger.wandb_run.id if wandb_logger.wandb else None}
# Save last, best and delete
torch.save(ckpt, last)
if epoch > 70:
torch.save(ckpt, wdir / ('last_' + str(epoch) + '.pt'))
if best_fitness == fi_rm:
torch.save(ckpt, best)
if wandb_logger.wandb:
if ((epoch + 1) % opt.save_period == 0 and not final_epoch) and opt.save_period != -1:
wandb_logger.log_model(
last.parent, opt, epoch, fi_rm, best_model=best_fitness == fi_rm)
del ckpt
# end epoch ----------------------------------------------------------------------------------------------------
# end training
if rank in [-1, 0]:
# Plots
if plots: # 不进化就画图
plot_results(save_dir=save_dir) # save as results.png
if wandb_logger.wandb:
files = ['results.png', 'confusion_matrix.png', *[f'{x}_curve.png' for x in ('F1', 'PR', 'P', 'R')]]
wandb_logger.log({"Results": [wandb_logger.wandb.Image(str(save_dir / f), caption=f) for f in files
if (save_dir / f).exists()]})
# Test best.pt
logger.info('%g epochs completed in %.3f hours.\n' % (epoch - start_epoch + 1, (time.time() - t0) / 3600))
if opt.data.endswith('coco.yaml') and nc == 80: # if COCO
for m in (last, best) if best.exists() else (last): # speed, mAP tests
results, _, _ = test.test(opt.data,
batch_size=batch_size * 2,
imgsz=imgsz_test,
conf_thres=0.001,
iou_thres=0.7,
model=attempt_load(m, device).half(),
single_cls=opt.single_cls,
dataloader=testloader,
save_dir=save_dir,
save_json=True,
plots=False,
is_coco=is_coco)
# Strip optimizers
final = best if best.exists() else last # final model
for f in last, best:
if f.exists():
strip_optimizer(f) # strip optimizers
if opt.bucket:
os.system(f'gsutil cp {final} gs://{opt.bucket}/weights') # upload
if wandb_logger.wandb and not opt.evolve: # Log the stripped model
wandb_logger.wandb.log_artifact(str(final), type='model',
name='run_' + wandb_logger.wandb_run.id + '_model',
aliases=['last', 'best', 'stripped'])
wandb_logger.finish_run()
else:
dist.destroy_process_group()
torch.cuda.empty_cache()
return results
#exp occloss = 1 steploss = 1 其余为0
if __name__ == '__main__':
parser = argparse.ArgumentParser()
# parser.add_argument('--weights', type=str, default='/ai/zhdata/lyp/multiyolov5_point_v2_tda4cpp/runs/train/exp54/weights/exp54_last_116_20251016_v2.0.37.pt',help='initial weights path')#default='yolov5s.pt'
parser.add_argument('--weights', type=str, default='./last_97.pt',help='initial weights path')#default='yolov5s.pt'
parser.add_argument('--extra-weights', type=str, default='', help='additional weights to load, comma-separated')
#修改
parser.add_argument('--cfg', type=str, default='models/yolov11_custom_seg_big.yaml', help='model.yaml path')#
parser.add_argument('--prefer-ckpt-cfg', action='store_true', help='优先使用checkpoint自带的yaml以保证结构一致')
parser.add_argument('--strict-load', action='store_true', help='严格加载state_dict(不跳过shape不匹配的层)')
parser.add_argument('--calc-macs', action='store_true', help='只计算MACs(800x800和736x608)后退出')
parser.add_argument('--data', type=str, default='data/custom.yaml', help='data.yaml path')#coco custom
parser.add_argument('--hyp', type=str, default='data/hyp.scratch.yaml', help='hyperparameters path')
parser.add_argument('--epochs', type=int, default=120)
parser.add_argument('--batch-size', type=int, default=48, help='total batch size for all GPUs')
parser.add_argument('--img-size', nargs='+', type=int, default=[736, 608], help='[train, test] image sizes') #HW
parser.add_argument('--rect', action='store_true', help='rectangular training')
parser.add_argument('--resume', nargs='?', const=True, default='', help='resume most recent training')#False
parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
parser.add_argument('--notest', action='store_true', help='only test final epoch')
parser.add_argument('--noautoanchor', action='store_true', help='disable autoanchor check')
parser.add_argument('--evolve', action='store_true', help='evolve hyperparameters')
parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
parser.add_argument('--cache-images', action='store_true', help='cache images for faster training')
parser.add_argument('--image-weights', default=True,action='store_true', help='use weighted image selection for training')
parser.add_argument('--device', default='0', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%')
parser.add_argument('--single-cls', action='store_true', help='train multi-class data as single-class')
parser.add_argument('--adam', action='store_true', help='use torch.optim.Adam() optimizer')
parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode')
parser.add_argument('--local_rank', type=int, default=-1, help='DDP parameter, do not modify')
parser.add_argument('--workers', type=int, default=8, help='maximum number of dataloader workers')
parser.add_argument('--project', default='runs/train', help='save to project/name')
parser.add_argument('--entity', default=None, help='W&B entity')
parser.add_argument('--name', default='1226', help='save to project/name')
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
parser.add_argument('--quad', action='store_true', help='quad dataloader')
parser.add_argument('--linear-lr', action='store_true', help='linear LR')
parser.add_argument('--label-smoothing', type=float, default=0.1, help='Label smoothing epsilon')#默认0.1
parser.add_argument('--upload_dataset', action='store_true', help='Upload dataset as W&B artifact table')
parser.add_argument('--bbox_interval', type=int, default=-1, help='Set bounding-box image logging interval for W&B')
parser.add_argument('--save_period', type=int, default=-1, help='Log model after every "save_period" epoch')
parser.add_argument('--artifact_alias', type=str, default="latest", help='version of dataset artifact to be used')
opt = parser.parse_args()
# Set DDP variables DDP常规初始化
opt.world_size = int(os.environ['WORLD_SIZE']) if 'WORLD_SIZE' in os.environ else 1 # 获取总进程数world_size
opt.global_rank = int(os.environ['RANK']) if 'RANK' in os.environ else -1 # global_rank是所有进程可用的GPU号, local_rank是当前进程对应GPU号
set_logging(opt.global_rank)
if opt.global_rank in [-1, 0]:
# check_git_status() # 检测git版本,网络不好会卡住,手动关闭
check_requirements()
# Resume
wandb_run = check_wandb_resume(opt) # wandb有bug,没装
# 断点重续且没有wandb库
if opt.resume and not wandb_run: # resume an interrupted run
ckpt = opt.resume if isinstance(opt.resume, str) else get_latest_run() # specified or most recent path 找要续的模型pt
assert os.path.isfile(ckpt), 'ERROR: --resume checkpoint does not exist'
apriori = opt.global_rank, opt.local_rank
zh = Path(ckpt).parent.parent / 'opt.yaml'
with open(Path(ckpt).parent.parent / 'opt.yaml') as f: # 找 优化器 配置文件
opt = argparse.Namespace(**yaml.load(f, Loader=yaml.SafeLoader)) # replace
#修改
opt.cfg, opt.weights, opt.resume, opt.batch_size, opt.global_rank, opt.local_rank = '', ckpt, True, opt.total_batch_size, *apriori # reinstate
opt.extra_weights = '' # resume时忽略额外权重
logger.info('Resuming training from %s' % ckpt)
else:
# opt.hyp = opt.hyp or ('hyp.finetune.yaml' if opt.weights else 'hyp.scratch.yaml')
opt.data, opt.cfg, opt.hyp = check_file(opt.data), check_file(opt.cfg), check_file(opt.hyp) # check files
assert len(opt.cfg) or len(opt.weights), 'either --cfg or --weights must be specified' # cfg和weights至少有一个
opt.img_size.extend([opt.img_size[-1]] * (2 - len(opt.img_size))) # extend to 2 sizes (train, test)
opt.name = 'evolve' if opt.evolve else opt.name # project名字,用于保存文件夹
opt.save_dir = increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok | opt.evolve) # increment run
# DDP mode 数据多进程并行
opt.total_batch_size = opt.batch_size # 总batchsize
device = select_device(opt.device, batch_size=opt.batch_size) # 设备数
if opt.local_rank != -1: # 默认是-1不开启DDP
assert torch.cuda.device_count() > opt.local_rank
torch.cuda.set_device(opt.local_rank)
device = torch.device('cuda', opt.local_rank)
dist.init_process_group(backend='nccl', init_method='env://') # distributed backend DDP初始化进程组
assert opt.batch_size % opt.world_size == 0, '--batch-size must be multiple of CUDA device count' # 一般一卡开一进程, batchsize可被进程数整除
opt.batch_size = opt.total_batch_size // opt.world_size # 每个进程batchsize
# Hyperparameters 配置超参数
with open(opt.hyp) as f:
hyp = yaml.load(f, Loader=yaml.SafeLoader) # load hyps
# Train
logger.info(opt)
if not opt.evolve: # 没有用进化算法(默认)
tb_writer = None # init loggers
if opt.global_rank in [-1, 0]:
prefix = colorstr('tensorboard: ')
logger.info(f"{prefix}Start with 'tensorboard --logdir {opt.project}', view at http://localhost:6006/")
tb_writer = SummaryWriter(opt.save_dir) # Tensorboard
train(hyp, opt, device, tb_writer)
# Evolve hyperparameters (optional)
else:
# Hyperparameter evolution metadata (mutation scale 0-1, lower_limit, upper_limit)
meta = {'lr0': (1, 1e-5, 1e-1), # initial learning rate (SGD=1E-2, Adam=1E-3)
'lrf': (1, 0.01, 1.0), # final OneCycleLR learning rate (lr0 * lrf)
'momentum': (0.3, 0.6, 0.98), # SGD momentum/Adam beta1
'weight_decay': (1, 0.0, 0.001), # optimizer weight decay
'warmup_epochs': (1, 0.0, 5.0), # warmup epochs (fractions ok)
'warmup_momentum': (1, 0.0, 0.95), # warmup initial momentum
'warmup_bias_lr': (1, 0.0, 0.2), # warmup initial bias lr
'box': (1, 0.02, 0.2), # box loss gain
'cls': (1, 0.2, 4.0), # cls loss gain
'cls_pw': (1, 0.5, 2.0), # cls BCELoss positive_weight
'obj': (1, 0.2, 4.0), # obj loss gain (scale with pixels)
'obj_pw': (1, 0.5, 2.0), # obj BCELoss positive_weight
'iou_t': (0, 0.1, 0.7), # IoU training threshold
'anchor_t': (1, 2.0, 8.0), # anchor-multiple threshold
'anchors': (2, 2.0, 10.0), # anchors per output grid (0 to ignore)
'fl_gamma': (0, 0.0, 2.0), # focal loss gamma (efficientDet default gamma=1.5)
'hsv_h': (1, 0.0, 0.1), # image HSV-Hue augmentation (fraction)
'hsv_s': (1, 0.0, 0.9), # image HSV-Saturation augmentation (fraction)
'hsv_v': (1, 0.0, 0.9), # image HSV-Value augmentation (fraction)
'degrees': (1, 0.0, 45.0), # image rotation (+/- deg)
'translate': (1, 0.0, 0.9), # image translation (+/- fraction)
'scale': (1, 0.0, 0.9), # image scale (+/- gain)
'shear': (1, 0.0, 10.0), # image shear (+/- deg)
'perspective': (0, 0.0, 0.001), # image perspective (+/- fraction), range 0-0.001
'flipud': (1, 0.0, 1.0), # image flip up-down (probability)
'fliplr': (0, 0.0, 1.0), # image flip left-right (probability)
'mosaic': (1, 0.0, 1.0), # image mixup (probability)
'mixup': (1, 0.0, 1.0)} # image mixup (probability)
assert opt.local_rank == -1, 'DDP mode not implemented for --evolve'
opt.notest, opt.nosave = True, True # only test/save final epoch
# ei = [isinstance(x, (int, float)) for x in hyp.values()] # evolvable indices
yaml_file = Path(opt.save_dir) / 'hyp_evolved.yaml' # save best result here
if opt.bucket:
os.system('gsutil cp gs://%s/evolve.txt .' % opt.bucket) # download evolve.txt if exists
for _ in range(300): # generations to evolve
if Path('evolve.txt').exists(): # if evolve.txt exists: select best hyps and mutate
# Select parent(s)
parent = 'single' # parent selection method: 'single' or 'weighted'
x = np.loadtxt('evolve.txt', ndmin=2)
n = min(5, len(x)) # number of previous results to consider
x = x[np.argsort(-fitness(x))][:n] # top n mutations
w = fitness(x) - fitness(x).min() # weights
if parent == 'single' or len(x) == 1:
# x = x[random.randint(0, n - 1)] # random selection
x = x[random.choices(range(n), weights=w)[0]] # weighted selection
elif parent == 'weighted':
x = (x * w.reshape(n, 1)).sum(0) / w.sum() # weighted combination
# Mutate
mp, s = 0.8, 0.2 # mutation probability, sigma
npr = np.random
npr.seed(int(time.time()))
g = np.array([x[0] for x in meta.values()]) # gains 0-1
ng = len(meta)
v = np.ones(ng)
while all(v == 1): # mutate until a change occurs (prevent duplicates)
v = (g * (npr.random(ng) < mp) * npr.randn(ng) * npr.random() * s + 1).clip(0.3, 3.0)
for i, k in enumerate(hyp.keys()): # plt.hist(v.ravel(), 300)
hyp[k] = float(x[i + 7] * v[i]) # mutate
# Constrain to limits
for k, v in meta.items():
hyp[k] = max(hyp[k], v[1]) # lower limit
hyp[k] = min(hyp[k], v[2]) # upper limit
hyp[k] = round(hyp[k], 5) # significant digits
# Train mutation
results = train(hyp.copy(), opt, device)
# Write mutation results
print_mutation(hyp.copy(), results, yaml_file, opt.bucket)
# Plot results
plot_evolution(yaml_file)
print(f'Hyperparameter evolution complete. Best results saved as: {yaml_file}\n'
f'Command to train a new model with these hyperparameters: $ python train.py --hyp {yaml_file}')
已按“尽可能加载已有权重、促进收敛”的目标修改完成,支持多权重顺序加载并自动跳过不匹配层。
你现在可以同时加载:
- YOLO11 预训练(主要对 backbone 生效)
- 你原来的多任务模型(主要对 head/分割分支生效)
我做了什么改动
- 在 train_608_736.py 增加 --extra-weights,支持逗号分隔的多个权重。
- 允许按顺序加载多个权重,每次只加载 shape 匹配的参数,最大化复用。
- 适配不同 checkpoint 结构(model/state_dict)。
- 断点续训时自动忽略额外权重,防止干扰。
推荐用法(顺序会覆盖同名层)
> 加载顺序为:--weights → --extra-weights(后者会覆盖同名层)
推荐顺序(先 YOLO11,后旧多任务)
python train_608_736.py --weights yolov11_pretrain.pt --extra-weights old_multitask.pt
如果你希望反过来(以 YOLO11 覆盖旧模型的共享层):
python train_608_736.py --weights old_multitask.pt --extra-weights yolov11_pretrain.pt
说明
- --extra-weights 支持多个:--extra-weights a.pt,b.pt
- 仍会打印每个权重加载到模型的层数统计
- 当前策略为了“最大化加载”,load_state_dict 使用非严格模式;--strict-load 只控制是否过滤 shape 不匹配层
如果你希望我进一步做“按模块优先级加载”(比如只拿 YOLO11 的 backbone、只拿旧模型的 head),也可以继续说,我可以加精细化规则(key 前缀过滤)。
更多推荐


所有评论(0)