🔍 为什么选择 LangGraph + Elasticsearch?

Elasticsearch 原生集成主流生成式 AI 工具,而 LangGraph 检索代理模板 是由 LangChain 开发的开源 RAG 应用框架。两者结合,不仅能快速构建基于多模态检索的问答系统,还能通过可视化流图显著提升开发效率。

⚙️ 快速搭建指南(5 步上手)

✅ 前置条件
  • Elasticsearch 8.0+(支持本地或云端)
  • Python 3.9+
  • LLM 接入密钥:如 中 Cohere 中、中 OpenAI 中、中 Claude 中
🛠 Step 1:安装 & 初始化项目
pip install --upgrade "langgraph-cli[inmem]"mkdir lg-agent-demo && cd lg-agent-demolanggraph new lg-agent-demo

选择模板: 👉 Retrieval Agent(选项 4)+ Python(选项 1)

模板选择界面

若遇 SSL 错误,可运行安装证书命令(Mac):

/Applications/Python\ 3.9/Install\ Certificates.command
🛠 Step 2:环境与依赖配置
python3 -m venv lg-demosource lg-demo/bin/activatepip install -e .cp .env.example .env

编辑 .env 配置文件(示例):

ELASTICSEARCH_URL=https://your_elastic_urlELASTICSEARCH_API_KEY=your_elastic_keyCOHERE_API_KEY=your_cohere_key
🛠 Step 3:模型参数设置

修改 src/retrieval_graph/configuration.py 文件,配置使用的嵌入与生成模型:

embedding_model = "cohere/embed-english-v3.0"query_model = "cohere/command-r-08-2024"response_model = "cohere/command-r-08-2024"
🛠 Step 4:启动 LangGraph 服务
langgraph dev

成功后访问 Studio,默认包含两个流程:

  • Indexer Graph:用于文档向量化与注入
  • Retrieval Graph:用于检索文档并生成回答

工作流界面

🛠 Step 5:文档注入 + 实时问答

注入测试数据(以 NoveTech Q1 财报为例):

[  {"page_content": "NoveTech Q1 2025 Revenue: $120.5M..."},  {"page_content": "AI 市场份额增长 15%,开设两家新办公室..."}]

在 Retrieval Graph 中执行查询:

What was NovaTech Solutions total revenue in Q1 2025?

系统将精准返回答案,并展示引用文档:

⚡️ 增强功能:预测用户接下来会问什么

通过添加 predict_query 节点与提示词,系统可预测用户可能的后续提问,形成更连贯的交互体验。

提示词样例(位于 prompts.py):

PREDICT_NEXT_QUESTION_PROMPT = """根据用户最近一次提问与返回文档,预测用户可能会继续提出的 3 个自然问题..."""

界面效果如下


💎 为什么值得一试?

价值点 描述
🧠 开发提效 可视化流程图 + 模板化配置,最快 30 分钟构建 RAG 应用
🚀 快速部署 本地/云端灵活切换,支持多种 LLM 与向量库接入
🔁 持久记忆 支持状态保持、上下文追踪,提高问答一致性
🧩 高度可扩展 自定义 Node、增加预测模块、轻松迭代升级
📦 完整代码 开源模板:GitHub 地址

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

Logo

有“AI”的1024 = 2048,欢迎大家加入2048 AI社区

更多推荐