2025最新Transformer大模型教程,5章节详解+实战项目,让你秒懂AI核心框架
本文推荐了一个全面学习Transformer模型的五章节教程,从Seq2Seq模型基础和注意力机制入门,到深入解析Encoder和Decoder结构细节,最后通过机器翻译项目实战巩固理解。教程强调Transformer每个结构设计都有其原理,建议多次阅读以加深理解,全文阅读约需1-2小时。通过本教程,读者可以系统掌握Transformer模型的工作原理和实现方法,为学习大模型奠定基础。
本文推荐了一个全面学习Transformer模型的五章节教程,从Seq2Seq模型基础和注意力机制入门,到深入解析Encoder和Decoder结构细节,最后通过机器翻译项目实战巩固理解。教程强调Transformer每个结构设计都有其原理,建议多次阅读以加深理解,全文阅读约需1-2小时。通过本教程,读者可以系统掌握Transformer模型的工作原理和实现方法,为学习大模型奠定基础。
如果你正在学习深度学习或者大模型相关的内容,肯定听说过Transformer,作为目前最有望实现大一统的模型框架,其影响力不言而喻
很多同学在学习Transformer的过程中,可能并不能很好理解其中每一个结构设计的细节和原理
这一期主要是给大家推荐一个Transformer从入门到深入理解的教程
这个教程的具体内容如下:
第一章:引言
Transformer模型是对Seq2Seq模型的改进,集成了Encoder-Decoder的思想,但摈弃了RNN,采用注意力机制来重构内部机制。这一部分先介绍Seq2Seq模型,以及Encoder-Decoder结构工作的流程,最后介绍注意力机制的发展历程和优缺点


第二章:Transformer简述
这一部分先介绍深度学习中如何引入注意力机制,注意力机制是如何起作用的,全局注意力与局部注意力机制,然后介绍Transformer模型结构以及工作流程,最后对比Transformer, RNN和CNN在特征提取上的区别


第三章:Encoder结构
这一部分先介绍Encoder的工作流程,包括数据出入,位置编码,多头注意力层,残差与层归一化,缩放点积注意力,自注意力机制,然后介绍交叉注意力和自注意力的区别,这部分内容比较细节,建议详细看一遍

第四章:Decoder结构
这一部分先介绍Decoder解码流程,然后介绍掩码多头注意力机制,掩码填充的机制,Decoder和Encoder的区别是有个交叉注意力,最后介绍模型的训练和评估的技巧,以及Bert模型和GPT模型

第五章:项目实战
这一部分是介绍一个项目实战案例,即机器翻译,Transformer结构拆解、使用 NumPy 和 SciPy 实现通用注意力机制,看完这一部分会对Transformer模型从代码层面有更多的认识

Transformer模型的内容不多,但每一个结构都值得拆解出来进行分析,每一部分的设计都不是无缘无故,建议多看几遍,加深对Transformer模型的理解,阅读一遍大概需要1-2h左右
最后
我在一线科技企业深耕十二载,见证过太多因技术卡位而跃迁的案例。那些率先拥抱 AI 的同事,早已在效率与薪资上形成代际优势,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在大模型的学习中的很多困惑。
我整理出这套 AI 大模型突围资料包:
- ✅AI大模型学习路线图
- ✅Agent行业报告
- ✅100集大模型视频教程
- ✅大模型书籍PDF
- ✅DeepSeek教程
- ✅AI产品经理入门资料
完整的大模型学习和面试资料已经上传带到CSDN的官方了,有需要的朋友可以扫描下方二维码免费领取【保证100%免费】👇👇

为什么说现在普通人就业/升职加薪的首选是AI大模型?
人工智能技术的爆发式增长,正以不可逆转之势重塑就业市场版图。从DeepSeek等国产大模型引发的科技圈热议,到全国两会关于AI产业发展的政策聚焦,再到招聘会上排起的长队,AI的热度已从技术领域渗透到就业市场的每一个角落。

智联招聘的最新数据给出了最直观的印证:2025年2月,AI领域求职人数同比增幅突破200% ,远超其他行业平均水平;整个人工智能行业的求职增速达到33.4%,位居各行业榜首,其中人工智能工程师岗位的求职热度更是飙升69.6%。
AI产业的快速扩张,也让人才供需矛盾愈发突出。麦肯锡报告明确预测,到2030年中国AI专业人才需求将达600万人,人才缺口可能高达400万人,这一缺口不仅存在于核心技术领域,更蔓延至产业应用的各个环节。


资料包有什么?
①从入门到精通的全套视频教程⑤⑥
包含提示词工程、RAG、Agent等技术点
② AI大模型学习路线图(还有视频解说)
全过程AI大模型学习路线

③学习电子书籍和技术文档
市面上的大模型书籍确实太多了,这些是我精选出来的

④各大厂大模型面试题目详解

⑤ 这些资料真的有用吗?
这份资料由我和鲁为民博士共同整理,鲁为民博士先后获得了北京清华大学学士和美国加州理工学院博士学位,在包括IEEE Transactions等学术期刊和诸多国际会议上发表了超过50篇学术论文、取得了多项美国和中国发明专利,同时还斩获了吴文俊人工智能科学技术奖。目前我正在和鲁博士共同进行人工智能的研究。
所有的视频教程由智泊AI老师录制,且资料与智泊AI共享,相互补充。这份学习大礼包应该算是现在最全面的大模型学习资料了。
资料内容涵盖了从入门到进阶的各类视频教程和实战项目,无论你是小白还是有些技术基础的,这份资料都绝对能帮助你提升薪资待遇,转行大模型岗位。


智泊AI始终秉持着“让每个人平等享受到优质教育资源”的育人理念,通过动态追踪大模型开发、数据标注伦理等前沿技术趋势,构建起"前沿课程+智能实训+精准就业"的高效培养体系。
课堂上不光教理论,还带着学员做了十多个真实项目。学员要亲自上手搞数据清洗、模型调优这些硬核操作,把课本知识变成真本事!


如果说你是以下人群中的其中一类,都可以来智泊AI学习人工智能,找到高薪工作,一次小小的“投资”换来的是终身受益!
应届毕业生:无工作经验但想要系统学习AI大模型技术,期待通过实战项目掌握核心技术。
零基础转型:非技术背景但关注AI应用场景,计划通过低代码工具实现“AI+行业”跨界。
业务赋能 突破瓶颈:传统开发者(Java/前端等)学习Transformer架构与LangChain框架,向AI全栈工程师转型。
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓**

更多推荐

所有评论(0)