目录

一、Kotlin为主,Java为辅的现代化语言策略

1.1 Kotlin语言特性深度应用、

1.2 Java兼容性处理策略

二、声明式UI:Jetpack Compose深度实践

2.1 现代化UI架构模式

2.2 Compose性能优化实践

三、架构模式:MVVM + Clean Architecture + MVI的融合

3.1 Clean Architecture实现细节

四、AI集成:TensorFlow Lite + 云服务的混合架构

4.1 TensorFlow Lite模型管理与推理

4.2 云AI服务集成

五、构建工具与模块化架构

5.1 现代化Gradle配置

5.2 模块化配置

六、测试策略完整实现

七、性能监控与优化

7.1 应用性能监控

八、总结


一、Kotlin为主,Java为辅的现代化语言策略

1.1 Kotlin语言特性深度应用、

这部分主要解决多语言环境下代码的兼容性和现代化转型问题,Kotlin具有协程优化异步处理的功能,查看官网资料和询问AI后,发现可以利用Kotlin DSL简化复杂配置,同时保持与Java代码的无缝互操作。

实现原理:

通过CoroutineScope管理协程生命周期,避免内存泄漏;使用async/await实现网络请求的并行处理;用Flow替代LiveData,扩展函数和lambda表达式创建领域特定语言;通过@JvmOverloads、@JvmStatic等注解确保Java使用。

技术创新点:

自动取消未完成请求,数据库可以与网络数据的自动同步,渐进式Java到Kotlin迁移策略,最小化风险。

// 1.1.1 协程与结构化并发
class UserRepository @Inject constructor(
    private val userDao: UserDao,
    private val apiService: UserApiService
) {
    // 使用CoroutineScope管理生命周期
    private val scope = CoroutineScope(SupervisorJob() + Dispatchers.IO)
    
    // 并发优化:并行网络请求
    suspend fun fetchUserData(userId: String): UserData = coroutineScope {
        val userDeferred = async { apiService.getUser(userId) }
        val settingsDeferred = async { apiService.getUserSettings(userId) }
        val historyDeferred = async { apiService.getUserHistory(userId) }
        
        val user = userDeferred.await()
        val settings = settingsDeferred.await()
        val history = historyDeferred.await()
        
        // 合并数据
        UserData(user, settings, history).also { data ->
            // 并发写入数据库
            launch { userDao.insertOrUpdate(data) }
        }
    }
    
    // 1.1.2 Flow状态流管理
    fun observeUserData(userId: String): Flow<UserData> = channelFlow {
        // 数据库与网络的同步
        val localFlow = userDao.observeUser(userId)
        val networkFlow = flow {
            val data = fetchUserData(userId)
            emit(data)
        }
        
        // 合并流:优先显示本地,网络更新后刷新
        merge(
            localFlow,
            networkFlow
        )
        .distinctUntilChanged()
        .collect { send(it) }
    }
    
    // 1.1.3 Kotlin DSL构建配置
    fun buildComplexConfiguration() = complexConfig {
        network {
            baseUrl = "https://api.example.com"
            connectTimeout = 30.seconds
            readTimeout = 30.seconds
            loggingInterceptor {
                level = if (BuildConfig.DEBUG) Level.BODY else Level.NONE
            }
        }
        database {
            name = "app_database.db"
            version = 1
            exportSchema = true
        }
        ai {
            engineType = EngineType.HYBRID
            cacheStrategy = CacheStrategy.LRU
        }
    }
}
 
// DSL构建器
class ComplexConfigDsl {
    var network: NetworkConfig? = null
    var database: DatabaseConfig? = null
    var ai: AIConfig? = null
    
    fun network(block: NetworkConfigDsl.() -> Unit) {
        network = NetworkConfigDsl().apply(block).build()
    }
    
    fun database(block: DatabaseConfigDsl.() -> Unit) {
        database = DatabaseConfigDsl().apply(block).build()
    }
}

1.2 Java兼容性处理策略

// 1.2.1 向后兼容的Java接口
public interface LegacyCallback {
    void onSuccess(Result result);
    void onError(Throwable error);
}
 
// Kotlin端的适配器
class CallbackAdapter(
    private val legacyCallback: LegacyCallback
) {
    suspend fun <T> adapt(
        block: suspend () -> T
    ): T = suspendCoroutine { continuation ->
        try {
            val result = block()
            legacyCallback.onSuccess(result.toLegacyResult())
            continuation.resumeWith(Result.success(result))
        } catch (e: Exception) {
            legacyCallback.onError(e)
            continuation.resumeWith(Result.failure(e))
        }
    }
}
 
// 1.2.2 Java与Kotlin互操作优化
@JvmOverloads
fun processData(
    data: String,
    options: ProcessingOptions = ProcessingOptions.default(),
    @Nullable callback: ((Result) -> Unit)? = null
) {
    // 处理逻辑
}
 
// 生成Java友好的静态方法
object FileUtils {
    @JvmStatic
    fun readFile(path: String): String = File(path).readText()
    
    @JvmStatic
    fun writeFile(path: String, content: String) {
        File(path).writeText(content)
    }
}

二、声明式UI:Jetpack Compose深度实践

代码作用:

构建现代化、高性能的声明式用户界面,通过状态驱动UI更新,优化用户体验。

实现原理:

单向数据流确保状态可预测,通过状态变化自动触发UI更新,基于状态的声明式动画。

技术创新点:

单一数据源确保UI一致性,通过DerivedStateOf减少重绘,Canvas API实现高性能自定义绘制组件。

2.1 现代化UI架构模式

// 2.1.1 Compose + MVI状态管理
data class MainScreenState(
    val userData: UserData? = null,
    val predictions: List<Prediction> = emptyList(),
    val isLoading: Boolean = false,
    val error: UiError? = null,
    val searchQuery: String = "",
    val selectedTab: MainTab = MainTab.HOME
) {
    val filteredPredictions: List<Prediction>
        get() = predictions.filter { prediction ->
            searchQuery.isEmpty() || prediction.title.contains(searchQuery, ignoreCase = true)
        }
}
 
sealed class MainScreenEvent {
    data class SearchQueryChanged(val query: String) : MainScreenEvent()
    data class TabSelected(val tab: MainTab) : MainScreenEvent()
    object LoadData : MainScreenEvent()
    data class PredictionClicked(val id: String) : MainScreenEvent()
    object Retry : MainScreenEvent()
}
 
sealed class MainScreenSideEffect {
    data class NavigateToDetail(val predictionId: String) : MainScreenSideEffect()
    data class ShowSnackbar(val message: String) : MainScreenSideEffect()
    data class ShowDialog(val type: DialogType) : MainScreenSideEffect()
}
 
@HiltViewModel
class MainViewModel @Inject constructor(
    private val getUserDataUseCase: GetUserDataUseCase,
    private val getPredictionsUseCase: GetPredictionsUseCase
) : ViewModel() {
    
    private val _state = MutableStateFlow(MainScreenState())
    val state: StateFlow<MainScreenState> = _state.asStateFlow()
    
    private val _sideEffects = Channel<MainScreenSideEffect>()
    val sideEffects: Flow<MainScreenSideEffect> = _sideEffects.receiveAsFlow()
    
    fun handleEvent(event: MainScreenEvent) {
        when (event) {
            is MainScreenEvent.SearchQueryChanged -> {
                _state.update { it.copy(searchQuery = event.query) }
            }
            is MainScreenEvent.TabSelected -> {
                _state.update { it.copy(selectedTab = event.tab) }
            }
            MainScreenEvent.LoadData -> loadData()
            is MainScreenEvent.PredictionClicked -> {
                viewModelScope.launch {
                    _sideEffects.send(
                        MainScreenSideEffect.NavigateToDetail(event.id)
                    )
                }
            }
            MainScreenEvent.Retry -> {
                _state.update { it.copy(error = null) }
                loadData()
            }
        }
    }
    
    private fun loadData() {
        _state.update { it.copy(isLoading = true) }
        
        viewModelScope.launch {
            val userDeferred = async { getUserDataUseCase() }
            val predictionsDeferred = async { getPredictionsUseCase() }
            
            try {
                val userData = userDeferred.await()
                val predictions = predictionsDeferred.await()
                
                _state.update {
                    it.copy(
                        userData = userData.getOrNull(),
                        predictions = predictions.getOrElse { emptyList() },
                        isLoading = false
                    )
                }
            } catch (e: Exception) {
                _state.update {
                    it.copy(
                        error = UiError.fromException(e),
                        isLoading = false
                    )
                }
            }
        }
    }
}

2.2 Compose性能优化实践

// 2.2.1 使用DerivedStateOf和remember优化重组
@Composable
fun PredictionList(
    predictions: List<Prediction>,
    searchQuery: String
) {
    val filteredPredictions = remember(predictions, searchQuery) {
        derivedStateOf {
            predictions.filter { prediction ->
                searchQuery.isEmpty() || 
                prediction.title.contains(searchQuery, true) ||
                prediction.content.contains(searchQuery, true)
            }
        }
    }
    
    LazyColumn {
        items(
            items = filteredPredictions.value,
            key = { prediction -> prediction.id }
        ) { prediction ->
            // 使用stickyHeaders快速滚动
            if (prediction.shouldShowDateHeader) {
                StickyHeader {
                    DateHeader(prediction.createdAt)
                }
            }
            
            PredictionItem(
                prediction = prediction,
                modifier = Modifier.animateItemPlacement() // 动画优化
            )
        }
    }
}
 
// 2.2.2 自定义布局与绘制
@Composable
fun WaveformVisualizer(
    amplitudeData: List<Float>,
    modifier: Modifier = Modifier
) {
    Canvas(modifier = modifier.fillMaxWidth().height(100.dp)) {
        val barWidth = size.width / amplitudeData.size
        val centerY = size.height / 2
        
        amplitudeData.forEachIndexed { index, amplitude ->
            val x = index * barWidth
            val barHeight = amplitude * size.height
            
            drawRect(
                color = Color.Blue,
                topLeft = Offset(x, centerY - barHeight / 2),
                size = Size(barWidth - 2.dp.toPx(), barHeight)
            )
        }
    }
}
 
// 2.2.3 复杂手势处理
@Composable
fun DraggablePredictionCard(
    prediction: Prediction,
    onDismiss: () -> Unit
) {
    val offsetX = remember { Animatable(0f) }
    val dismissThreshold = LocalConfiguration.current.screenWidthDp.dp * 0.4f
    
    Box(
        modifier = Modifier
            .fillMaxWidth()
            .pointerInput(Unit) {
                detectHorizontalDragGestures(
                    onDragEnd = {
                        if (abs(offsetX.value) > dismissThreshold.toPx()) {
                            animateDismissal()
                        } else {
                            offsetX.animateTo(0f)
                        }
                    }
                ) { change, dragAmount ->
                    offsetX.snapTo(offsetX.value + dragAmount)
                }
            }
    ) {
        Card(
            modifier = Modifier.offset { IntOffset(offsetX.value.roundToInt(), 0) }
        ) {
            // 卡片内容
        }
    }
}

三、架构模式:MVVM + Clean Architecture + MVI的融合

代码作用:

实现可测试、可维护、可扩展的应用架构,分离业务逻辑、数据层和表现层。

实现原理:

Clean Architecture的依赖规则是从内向外,采用实体、值对象、领域服务、仓储模式,从事件到状态更新再到UI渲染,最后进行单元测试、集成测试、端到端测试的分层测试。

技术创新点:

采用MVVM+Clean Architecture+MVI编程,具有本地优先,分级错误处理和优雅降级的功能,而且功能模块独立开发和测试。

3.1 Clean Architecture实现细节

// 3.1.1 领域层 - 纯粹的Kotlin/JVM模块
// :domain模块的build.gradle.kts
plugins {
    id("kotlin")
    id("kotlin-kapt")
}
 
dependencies {
    implementation(libs.kotlin.stdlib)
    implementation(libs.kotlin.coroutines.core)
    
    // 不依赖任何Android框架
    testImplementation(libs.junit)
    testImplementation(libs.mockk)
}
 
// 领域实体
data class User(
    val id: String,
    val name: String,
    val email: String,
    val preferences: UserPreferences
) {
    val isPremium: Boolean
        get() = preferences.subscriptionType == SubscriptionType.PREMIUM
    
    fun canAccessFeature(feature: Feature): Boolean {
        return when (feature) {
            Feature.BASIC -> true
            Feature.ADVANCED -> isPremium
            Feature.AI -> preferences.enableAI && isPremium
        }
    }
}
 
// 领域用例
class GeneratePredictionUseCase @Inject constructor(
    private val predictionRepository: PredictionRepository,
    private val aiRouter: AIRouter,
    private val validationService: ValidationService
) {
    suspend operator fun invoke(
        input: PredictionInput
    ): Result<Prediction> = withContext(Dispatchers.IO) {
        // 输入验证
        validationService.validate(input).fold(
            onSuccess = { validatedInput ->
                // 业务逻辑
                val existingPrediction = predictionRepository.findSimilar(validatedInput)
                if (existingPrediction != null) {
                    return@withContext Result.success(existingPrediction)
                }
                
                // AI处理
                aiRouter.process(validatedInput.toAiInput()).map { aiResult ->
                    val prediction = Prediction(
                        id = UUID.randomUUID().toString(),
                        input = validatedInput,
                        result = aiResult,
                        createdAt = Instant.now(),
                        confidence = aiResult.confidence
                    )
                    
                    // 保存
                    predictionRepository.save(prediction)
                    
                    prediction
                }
            },
            onFailure = { error ->
                Result.failure(error)
            }
        )
    }
}
 
// 3.1.2 数据层 - 多种数据源
class PredictionRepositoryImpl @Inject constructor(
    private val localDataSource: PredictionLocalDataSource,
    private val remoteDataSource: PredictionRemoteDataSource,
    private val cacheDataSource: PredictionCacheDataSource,
    private val networkMonitor: NetworkMonitor
) : PredictionRepository {
    
    override fun getPredictionsStream(): Flow<List<Prediction>> = channelFlow {
        // 优先从本地数据库获取
        val localFlow = localDataSource.getPredictionsStream()
        
        // 监听网络状态
        networkMonitor.isOnline.collectLatest { isOnline ->
            if (isOnline) {
                // 网络请求
                try {
                    val remotePredictions = remoteDataSource.getPredictions()
                    localDataSource.updatePredictions(remotePredictions)
                } catch (e: Exception) {
                    // 网络失败,回退到缓存
                    val cached = cacheDataSource.getCachedPredictions()
                    send(cached)
                }
            }
            
            // 发射本地数据
            localFlow.collect { predictions ->
                send(predictions)
            }
        }
    }
    
    override suspend fun savePrediction(prediction: Prediction) {
        // 写入策略:先本地,后远程,使用缓存兜底
        localDataSource.savePrediction(prediction)
        cacheDataSource.cachePrediction(prediction)
        
        if (networkMonitor.isCurrentlyOnline()) {
            try {
                remoteDataSource.savePrediction(prediction)
            } catch (e: Exception) {
                // 标记为待同步
                localDataSource.markForSync(prediction.id)
            }
        }
    }
}

四、AI集成:TensorFlow Lite + 云服务的混合架构

代码作用:

实现端侧AI推理与云端AI服务的智能协同,平衡性能、隐私和功能。

实现原理:

动态加载、缓存、版本控制的代码处理流水线编程过程,多种路由策略,gRPC高性能通信,Protobuf序列化等技术实现网络、性能和精度多维度降级。

技术创新点:

端侧+云端的架构,基于设备性能和任务复杂度自动选择模型,将任务分割处理,敏感信息本地处理,其余交给云端,大大减轻系统压力。

4.1 TensorFlow Lite模型管理与推理

// 4.1.1 模型管理器
class ModelManager @Inject constructor(
    @ApplicationContext private val context: Context,
    private val assetManager: AssetManager,
    private val fileManager: FileManager
) {
    // 模型配置
    data class ModelConfig(
        val name: String,
        val assetPath: String,
        val inputShape: List<Int>,
        val outputShape: List<Int>,
        val quantized: Boolean = false,
        val gpuDelegate: Boolean = false
    )
    
    // 支持的模型
    private val supportedModels = mapOf(
        ModelType.IMAGE_CLASSIFICATION to ModelConfig(
            name = "mobilenet_v2",
            assetPath = "models/mobilenet_v2.tflite",
            inputShape = listOf(1, 224, 224, 3),
            outputShape = listOf(1, 1001)
        ),
        ModelType.OBJECT_DETECTION to ModelConfig(
            name = "ssd_mobilenet",
            assetPath = "models/ssd_mobilenet.tflite",
            inputShape = listOf(1, 300, 300, 3),
            outputShape = listOf(1, 10, 4),
            gpuDelegate = true
        ),
        ModelType.TEXT_GENERATION to ModelConfig(
            name = "bert_qa",
            assetPath = "models/bert_qa.tflite",
            inputShape = listOf(1, 384),
            outputShape = listOf(1, 384)
        )
    )
    
    // 模型缓存
    private val modelCache = LruCache<String, Interpreter>(MAX_CACHE_SIZE)
    
    suspend fun loadModel(
        modelType: ModelType,
        options: Interpreter.Options = Interpreter.Options()
    ): Interpreter = withContext(Dispatchers.IO) {
        val config = supportedModels[modelType] ?: throw ModelNotFoundException(modelType)
        val cacheKey = "${modelType.name}_${config.name}"
        
        // 从缓存获取
        modelCache.get(cacheKey)?.let { return@withContext it }
        
        // 加载模型
        val modelFile = loadModelFile(config)
        
        // 配置选项
        options.numThreads = 4
        
        if (config.gpuDelegate && isGpuDelegateAvailable()) {
            GpuDelegate().also { delegate ->
                options.addDelegate(delegate)
            }
        }
        
        if (config.quantized) {
            options.setAllowFp16PrecisionForFp32(true)
        }
        
        // 创建解释器
        val interpreter = Interpreter(modelFile, options)
        
        // 放入缓存
        modelCache.put(cacheKey, interpreter)
        
        interpreter
    }
    
    private suspend fun loadModelFile(config: ModelConfig): File = withContext(Dispatchers.IO) {
        val cacheDir = context.cacheDir
        val modelFile = File(cacheDir, config.name)
        
        if (!modelFile.exists()) {
            // 从assets复制
            assetManager.open(config.assetPath).use { input ->
                modelFile.outputStream().use { output ->
                    input.copyTo(output)
                }
            }
        }
        
        modelFile
    }
    
    // 4.1.2 推理管道
    class InferencePipeline @Inject constructor(
        private val modelManager: ModelManager,
        private val preprocessor: Preprocessor,
        private val postprocessor: Postprocessor
    ) {
        suspend fun processImage(
            bitmap: Bitmap,
            modelType: ModelType = ModelType.IMAGE_CLASSIFICATION
        ): InferenceResult = withContext(Dispatchers.Default) {
            val interpreter = modelManager.loadModel(modelType)
            
            // 预处理
            val inputTensor = preprocessor.processImage(bitmap, modelType)
            
            // 推理
            val outputTensor = Array(1) { FloatArray(OUTPUT_SIZE) }
            val startTime = System.currentTimeMillis()
            interpreter.run(inputTensor, outputTensor)
            val inferenceTime = System.currentTimeMillis() - startTime
            
            // 后处理
            val result = postprocessor.processOutput(outputTensor[0], modelType)
            
            InferenceResult(
                result = result,
                inferenceTime = inferenceTime,
                modelType = modelType
            )
        }
    }
}

4.2 云AI服务集成

// 4.2.1 基于gRPC的高性能通信
class GrpcAIClient @Inject constructor(
    private val okHttpClient: OkHttpClient,
    private val gson: Gson
) : AIClient {
    private val channel: ManagedChannel by lazy {
        ManagedChannelBuilder
            .forAddress(AI_SERVER_HOST, AI_SERVER_PORT)
            .useTransportSecurity()
            .maxInboundMessageSize(MAX_MESSAGE_SIZE)
            .keepAliveTime(30, TimeUnit.SECONDS)
            .keepAliveTimeout(10, TimeUnit.SECONDS)
            .build()
    }
    
    private val stub: AIServiceGrpc.AIServiceStub by lazy {
        AIServiceGrpc.newStub(channel)
            .withInterceptors(
                AuthInterceptor(authToken),
                LoggingInterceptor(),
                RetryInterceptor()
            )
    }
    
    override suspend fun predict(
        request: PredictionRequest
    ): Result<PredictionResponse> = suspendCoroutine { continuation ->
        val call = stub.predict(
            request.toProto(),
            object : StreamObserver<PredictionResponseProto> {
                override fun onNext(value: PredictionResponseProto) {
                    val response = value.fromProto()
                    continuation.resume(Result.success(response))
                }
                
                override fun onError(t: Throwable) {
                    continuation.resume(Result.failure(t))
                }
                
                override fun onCompleted() {
                    // 流式调用时使用
                }
            }
        )
        
        // 设置超时
        channel.awaitTermination(REQUEST_TIMEOUT_SECONDS, TimeUnit.SECONDS)
    }
}
 
// 4.2.2 智能降级策略
class IntelligentFallbackStrategy @Inject constructor(
    private val connectivityManager: ConnectivityManager,
    private val deviceInfoProvider: DeviceInfoProvider,
    private val settingsManager: SettingsManager
) {
    data class FallbackDecision(
        val useLocalModel: Boolean,
        val modelType: ModelType,
        val quality: QualityLevel,
        val reason: String
    )
    
    suspend fun decideStrategy(
        input: AIInput,
        availableModels: List<ModelType>
    ): FallbackDecision = withContext(Dispatchers.Default) {
        val networkInfo = connectivityManager.activeNetworkInfo
        val isConnected = networkInfo?.isConnectedOrConnecting == true
        val isMetered = connectivityManager.isActiveNetworkMetered
        
        val deviceCapabilities = deviceInfoProvider.getCapabilities()
        val inputSize = estimateInputSize(input)
        
        return@withContext when {
            // 1. 无网络连接
            !isConnected -> FallbackDecision(
                useLocalModel = true,
                modelType = availableModels.minBy { it.sizeInMB },
                quality = QualityLevel.LOW,
                reason = "No network connection"
            )
            
            // 2. 计量网络 + 大数据量
            isMetered && inputSize > METERED_THRESHOLD -> FallbackDecision(
                useLocalModel = true,
                modelType = ModelType.IMAGE_CLASSIFICATION,
                quality = QualityLevel.MEDIUM,
                reason = "Large input on metered network"
            )
            
            // 3. 设备性能不足
            deviceCapabilities.score < PERFORMANCE_THRESHOLD -> FallbackDecision(
                useLocalModel = false,
                modelType = ModelType.CLOUD_OPTIMIZED,
                quality = QualityLevel.HIGH,
                reason = "Device performance constraints"
            )
            
            // 4. 用户设置优先
            settingsManager.useLocalAIOnly -> FallbackDecision(
                useLocalModel = true,
                modelType = availableModels.firstOrNull() ?: ModelType.DEFAULT,
                quality = QualityLevel.MEDIUM,
                reason = "User preference"
            )
            
            // 5. 默认使用云端
            else -> FallbackDecision(
                useLocalModel = false,
                modelType = ModelType.CLOUD_FULL,
                quality = QualityLevel.HIGH,
                reason = "Optimal conditions"
            )
        }
    }
}

五、构建工具与模块化架构

代码作用:

实现高效的构建流程、模块化开发和持续集成。

实现原理:

构建类型安全的脚本和各类功能模块,共享库等,支持多种环境处理,做到资源压缩、Dex优化。

技术创新点:

通过convention插件标准化所有模块配置,Flavor自动配置依赖和资源,按需加载后节省包体大小,加快编译速度。

5.1 现代化Gradle配置

// 项目级 build.gradle.kts
plugins {
    id("com.android.application") version "8.1.0" apply false
    id("com.android.library") version "8.1.0" apply false
    id("org.jetbrains.kotlin.android") version "1.9.0" apply false
    id("com.google.dagger.hilt.android") version "2.48" apply false
    id("com.google.devtools.ksp") version "1.9.0-1.0.13" apply false
}
 
// 版本管理
extra.apply {
    set("compileSdkVersion", 34)
    set("minSdkVersion", 24)
    set("targetSdkVersion", 34)
    
    // 依赖版本
    set("compose_version", "1.5.0")
    set("lifecycle_version", "2.6.1")
    set("room_version", "2.5.2")
    set("retrofit_version", "2.9.0")
    set("tensorflow_version", "0.4.4")
}
 
// 模块级 build.gradle.kts (:app)
plugins {
    id("com.android.application")
    id("org.jetbrains.kotlin.android")
    id("kotlin-kapt")
    id("com.google.dagger.hilt.android")
    id("com.google.devtools.ksp")
}
 
android {
    namespace = "com.example.aiassistant"
    compileSdk = 34
    
    defaultConfig {
        applicationId = "com.example.aiassistant"
        minSdk = 24
        targetSdk = 34
        versionCode = 1
        versionName = "1.0.0"
        
        // 启用多dex
        multiDexEnabled = true
        
        // 构建配置
        buildConfigField("String", "API_BASE_URL", "\"https://api.example.com\"")
        buildConfigField("boolean", "ENABLE_DEBUG_FEATURES", "${BuildConfig.DEBUG}")
        
        // 开启矢量图支持
        vectorDrawables.useSupportLibrary = true
        
        // 启用R8完整模式
        proguardFiles(
            getDefaultProguardFile("proguard-android-optimize.txt"),
            "proguard-rules.pro"
        )
    }
    
    buildTypes {
        release {
            isMinifyEnabled = true
            isShrinkResources = true
            isDebuggable = false
            
            proguardFiles(
                getDefaultProguardFile("proguard-android-optimize.txt"),
                "proguard-rules.pro"
            )
        }
        
        debug {
            applicationIdSuffix = ".debug"
            versionNameSuffix = "-DEBUG"
            isDebuggable = true
        }
        
        create("staging") {
            initWith(getByName("debug"))
            applicationIdSuffix = ".staging"
            versionNameSuffix = "-STAGING"
            matchingFallbacks += listOf("debug", "release")
        }
    }
    
    // 构建特性
    buildFeatures {
        compose = true
        buildConfig = true
        viewBinding = true
    }
    
    composeOptions {
        kotlinCompilerExtensionVersion = "1.5.1"
    }
    
    compileOptions {
        sourceCompatibility = JavaVersion.VERSION_17
        targetCompatibility = JavaVersion.VERSION_17
        isCoreLibraryDesugaringEnabled = true
    }
    
    kotlinOptions {
        jvmTarget = "17"
        freeCompilerArgs = freeCompilerArgs + listOf(
            "-opt-in=kotlin.RequiresOptIn",
            "-Xjvm-default=all",
            "-Xstring-concat=indy-with-constants"
        )
    }
    
    // 变体维度
    flavorDimensions += listOf("environment", "aiEngine")
    
    productFlavors {
        create("development") {
            dimension = "environment"
            applicationIdSuffix = ".dev"
            versionNameSuffix = "-dev"
        }
        
        create("production") {
            dimension = "environment"
        }
        
        create("tflite") {
            dimension = "aiEngine"
            buildConfigField("String", "AI_ENGINE", "\"TFLITE\"")
        }
        
        create("cloud") {
            dimension = "aiEngine"
            buildConfigField("String", "AI_ENGINE", "\"CLOUD\"")
        }
    }
    
    // 源集配置
    sourceSets {
        getByName("main") {
            java.srcDirs("src/main/kotlin")
            assets.srcDirs("src/main/assets")
            res.srcDirs("src/main/res")
        }
        
        getByName("development") {
            java.srcDirs("src/development/kotlin")
            res.srcDirs("src/development/res")
        }
        
        getByName("androidTest") {
            java.srcDirs("src/androidTest/kotlin")
            assets.srcDirs("src/androidTest/assets")
        }
    }
    
    // 测试选项
    testOptions {
        unitTests {
            isIncludeAndroidResources = true
            isReturnDefaultValues = true
        }
        
        animationsDisabled = true
    }
    
    // 打包选项
    packaging {
        resources {
            excludes += "/META-INF/{AL2.0,LGPL2.1}"
            excludes += "META-INF/*.kotlin_module"
            excludes += "META-INF/*.version"
        }
    }
}
 
dependencies {
    // 核心依赖
    implementation(platform("androidx.compose:compose-bom:2023.08.00"))
    
    // Jetpack Compose
    implementation("androidx.compose.ui:ui")
    implementation("androidx.compose.ui:ui-tooling-preview")
    implementation("androidx.compose.material3:material3")
    implementation("androidx.compose.material:material-icons-extended")
    implementation("androidx.activity:activity-compose:1.7.2")
    
    // AndroidX
    implementation("androidx.core:core-ktx:1.12.0")
    implementation("androidx.lifecycle:lifecycle-runtime-ktx:$lifecycle_version")
    implementation("androidx.lifecycle:lifecycle-viewmodel-compose:$lifecycle_version")
    implementation("androidx.navigation:navigation-compose:2.7.1")
    
    // 协程
    implementation("org.jetbrains.kotlinx:kotlinx-coroutines-android:1.7.3")
    implementation("org.jetbrains.kotlinx:kotlinx-coroutines-core:1.7.3")
    
    // 依赖注入
    implementation("com.google.dagger:hilt-android:2.48")
    kapt("com.google.dagger:hilt-compiler:2.48")
    implementation("androidx.hilt:hilt-navigation-compose:1.0.0")
    
    // 网络
    implementation("com.squareup.retrofit2:retrofit:$retrofit_version")
    implementation("com.squareup.retrofit2:converter-gson:$retrofit_version")
    implementation("com.squareup.okhttp3:logging-interceptor:4.11.0")
    
    // 数据库
    implementation("androidx.room:room-runtime:$room_version")
    implementation("androidx.room:room-ktx:$room_version")
    ksp("androidx.room:room-compiler:$room_version")
    
    // AI/ML
    implementation("org.tensorflow:tensorflow-lite:$tensorflow_version")
    implementation("org.tensorflow:tensorflow-lite-support:$tensorflow_version")
    implementation("org.tensorflow:tensorflow-lite-gpu:$tensorflow_version")
    implementation("org.tensorflow:tensorflow-lite-select-tf-ops:$tensorflow_version")
    
    // 工具库
    implementation("com.jakewharton.timber:timber:5.0.1")
    implementation("com.airbnb.android:lottie-compose:6.1.0")
    implementation("io.coil-kt:coil-compose:2.4.0")
    
    // 反混淆
    coreLibraryDesugaring("com.android.tools:desugar_jdk_libs:2.0.3")
    
    // 测试
    testImplementation("junit:junit:4.13.2")
    testImplementation("org.jetbrains.kotlinx:kotlinx-coroutines-test:1.7.3")
    testImplementation("io.mockk:mockk:1.13.5")
    
    androidTestImplementation("androidx.test.ext:junit:1.1.5")
    androidTestImplementation("androidx.test.espresso:espresso-core:3.5.1")
    androidTestImplementation("androidx.compose.ui:ui-test-junit4")
    debugImplementation("androidx.compose.ui:ui-tooling")
    debugImplementation("androidx.compose.ui:ui-test-manifest")
}

5.2 模块化配置

// :build-logic 构建逻辑模块
// build-logic/convention/build.gradle.kts
plugins {
    `kotlin-dsl`
}
 
dependencies {
    implementation(gradleApi())
    implementation(libs.android.gradle.plugin)
    implementation(libs.kotlin.gradle.plugin)
    implementation(libs.hilt.gradle.plugin)
}
 
// 自定义插件
abstract class AndroidFeatureConventionPlugin : Plugin<Project> {
    override fun apply(target: Project) {
        with(target) {
            pluginManager.apply {
                apply("com.android.library")
                apply("org.jetbrains.kotlin.android")
                apply("kotlin-kapt")
                apply("com.google.dagger.hilt.android")
            }
            
            extensions.configure<BaseAppModuleExtension> {
                defaultConfig {
                    minSdk = 24
                }
                
                buildFeatures {
                    compose = true
                }
                
                composeOptions {
                    kotlinCompilerExtensionVersion = "1.5.1"
                }
                
                dependencies {
                    add("implementation", project(":core:common"))
                    add("implementation", project(":core:ui"))
                    add("implementation", libs.hilt.android)
                    add("kapt", libs.hilt.compiler)
                }
            }
        }
    }
}
 
// 功能模块 (:feature-prediction) 的 build.gradle.kts
plugins {
    id("android-feature-convention")
}
 
android {
    namespace = "com.example.aiassistant.feature.prediction"
}
 
dependencies {
    implementation(project(":core:network"))
    implementation(project(":core:database"))
    implementation(project(":ai:engine"))
    
    implementation(libs.bundles.compose)
    implementation(libs.bundles.lifecycle)
    
    testImplementation(libs.bundles.unitTest)
    androidTestImplementation(libs.bundles.androidTest)
}

六、测试策略完整实现

代码作用:

确保代码质量,通过分层测试覆盖从单元到集成的全场景。

实现原理:

主要从业务逻辑和算法验证,模块间接口和交互验证。

技术创新点:

使用单元测试,集成测试,UI测试一起进行测试,声明式测试API来避免重复代码,利用Gradle并行执行加速测试。

// 6.1.1 领域层测试
class GeneratePredictionUseCaseTest {
    
    private lateinit var useCase: GeneratePredictionUseCase
    private lateinit var mockRepository: PredictionRepository
    private lateinit var mockAIRouter: AIRouter
    private lateinit var mockValidationService: ValidationService
    
    @BeforeEach
    fun setUp() {
        mockRepository = mockk()
        mockAIRouter = mockk()
        mockValidationService = mockk()
        useCase = GeneratePredictionUseCase(
            mockRepository,
            mockAIRouter,
            mockValidationService
        )
    }
    
    @Test
    fun `should return cached prediction when similar exists`() = runTest {
        // 给定
        val input = PredictionInput(
            text = "Test input",
            type = PredictionType.TEXT
        )
        val cachedPrediction = Prediction(
            id = "cached-id",
            input = input,
            result = PredictionResult(confidence = 0.9, label = "Test"),
            createdAt = Instant.now()
        )
        
        coEvery { mockValidationService.validate(any()) } returns Result.success(input)
        coEvery { mockRepository.findSimilar(any()) } returns cachedPrediction
        
        // 当
        val result = useCase(input)
        
        // 则
        assertTrue(result.isSuccess)
        assertEquals(cachedPrediction, result.getOrNull())
        coVerify(exactly = 0) { mockAIRouter.process(any()) }
    }
    
    @Test
    fun `should return failure when validation fails`() = runTest {
        // 给定
        val input = PredictionInput(
            text = "",
            type = PredictionType.TEXT
        )
        val validationError = ValidationError("Input cannot be empty")
        
        coEvery { mockValidationService.validate(any()) } returns 
            Result.failure(validationError)
        
        // 当
        val result = useCase(input)
        
        // 则
        assertTrue(result.isFailure)
        assertEquals(validationError, result.exceptionOrNull())
    }
}
 
// 6.1.2 UI测试
class PredictionScreenTest {
    
    @get:Rule
    val composeTestRule = createComposeRule()
    
    @Test
    fun shouldShowPredictionResult_whenPredictionSucceeds() {
        // 给定
        val fakeViewModel = FakePredictionViewModel().apply {
            setUiState(PredictionUiState.Success(fakePrediction))
        }
        
        // 当
        composeTestRule.setContent {
            AppTheme {
                PredictionScreen(viewModel = fakeViewModel)
            }
        }
        
        // 则
        composeTestRule
            .onNodeWithText("Prediction Result")
            .assertIsDisplayed()
        
        composeTestRule
            .onNodeWithText(fakePrediction.label, substring = true)
            .assertIsDisplayed()
    }
    
    @Test
    fun shouldShowError_whenPredictionFails() {
        // 给定
        val errorMessage = "Network error"
        val fakeViewModel = FakePredictionViewModel().apply {
            setUiState(PredictionUiState.Error(errorMessage))
        }
        
        // 当
        composeTestRule.setContent {
            AppTheme {
                PredictionScreen(viewModel = fakeViewModel)
            }
        }
        
        // 则
        composeTestRule
            .onNodeWithText("Error")
            .assertIsDisplayed()
        
        composeTestRule
            .onNodeWithText(errorMessage)
            .assertIsDisplayed()
    }
}
 
// 6.1.3 集成测试
@HiltAndroidTest
@MediumTest
class PredictionFlowIntegrationTest {
    
    @get:Rule
    val hiltRule = HiltAndroidRule(this)
    
    @get:Rule
    val composeTestRule = createAndroidComposeRule<MainActivity>()
    
    @Inject
    lateinit var database: AppDatabase
    
    @Inject
    lateinit var apiService: AIService
    
    @Before
    fun setUp() {
        hiltRule.inject()
        // 准备测试数据
        runBlocking {
            database.clearAllTables()
        }
    }
    
    @Test
    fun completePredictionFlow_shouldSaveToDatabase() {
        // 模拟网络响应
        mockWebServer.enqueue(
            MockResponse()
                .setResponseCode(200)
                .setBody(FakeData.predictionResponse)
        )
        
        // 执行UI操作
        composeTestRule.onNodeWithText("New Prediction")
            .performClick()
        
        composeTestRule.onNodeWithTag("inputField")
            .performTextInput("Test prediction input")
        
        composeTestRule.onNodeWithText("Predict")
            .performClick()
        
        // 验证结果
        composeTestRule.waitUntil(5000) {
            composeTestRule
                .onNodeWithText("Result:")
                .fetchSemanticsNode().isVisible
        }
        
        // 验证数据库
        runBlocking {
            val predictions = database.predictionDao().getAll()
            assertEquals(1, predictions.size)
        }
    }
}

七、性能监控与优化

代码作用:

监控应用性能,优化用户体验,提前发现和解决性能问题。

实现原理:

启动过程分段监控,内存和网络一起监控,JankStats检测UI卡顿,最后进行崩溃监控,确保异常正常及时处理。

技术创新点:

基于内存压力动态调整缓存策略,后台预加载、资源预取确保资源顺利获取,建立性能基准进行性能监控,实时进行数据采集和分析。

7.1 应用性能监控

// 7.1.1 启动性能监控
class AppStartupMonitor @Inject constructor(
    @ApplicationContext private val context: Context
) {
    private val startupTime = mutableMapOf<String, Long>()
    
    fun recordStartupPhase(phase: String) {
        startupTime[phase] = System.currentTimeMillis()
    }
    
    fun logStartupMetrics() {
        val totalTime = startupTime.values.last() - startupTime.values.first()
        
        val metrics = startupTime.entries
            .sortedBy { it.value }
            .windowed(2)
            .joinToString("\n") { (prev, current) ->
                val duration = current.value - prev.value
                "${current.key}: ${duration}ms"
            }
        
        Timber.d("""
            ====== App Startup Metrics ======
            Total time: ${totalTime}ms
            Phase breakdown:
            $metrics
            =================================
        """.trimIndent())
        
        // 上报到分析服务
        if (totalTime > CRITICAL_STARTUP_THRESHOLD) {
            reportCriticalStartup(totalTime)
        }
    }
}
 
// 7.1.2 内存监控
class MemoryMonitor @Inject constructor(
    private val activityManager: ActivityManager
) {
    
    data class MemoryStats(
        val totalMemory: Long,
        val usedMemory: Long,
        val availableMemory: Long,
        val isLowMemory: Boolean,
        val memoryClass: Int
    )
    
    fun getMemoryStats(): MemoryStats {
        val memoryInfo = ActivityManager.MemoryInfo()
        activityManager.getMemoryInfo(memoryInfo)
        
        val runtime = Runtime.getRuntime()
        val usedMemory = runtime.totalMemory() - runtime.freeMemory()
        val maxMemory = runtime.maxMemory()
        
        return MemoryStats(
            totalMemory = maxMemory,
            usedMemory = usedMemory,
            availableMemory = memoryInfo.availMem,
            isLowMemory = memoryInfo.lowMemory,
            memoryClass = activityManager.memoryClass
        )
    }
    
    fun checkMemoryPressure(): MemoryPressure {
        val stats = getMemoryStats()
        val memoryUsagePercentage = (stats.usedMemory.toDouble() / stats.totalMemory) * 100
        
        return when {
            stats.isLowMemory -> MemoryPressure.CRITICAL
            memoryUsagePercentage > 90 -> MemoryPressure.HIGH
            memoryUsagePercentage > 70 -> MemoryPressure.MEDIUM
            else -> MemoryPressure.LOW
        }
    }
    
    fun optimizeForMemoryPressure(pressure: MemoryPressure) {
        when (pressure) {
            MemoryPressure.HIGH, MemoryPressure.CRITICAL -> {
                // 清理缓存
                ImageLoader.get(context).clearMemoryCache()
                
                // 减少Bitmap质量
                System.setProperty("android.bitmap_quality", "medium")
                
                // 记录事件
                Analytics.logEvent("memory_optimization_triggered", mapOf(
                    "pressure_level" to pressure.name
                ))
            }
            else -> {
                // 正常模式
            }
        }
    }
}

八、总结

1.AI混合架构:

基于设备能力、网络状态、任务复杂度的智能路由算法,端侧AI与云端AI协同合作,运用隐私敏感的AI计算策略,在隐私和功能间取得平衡。
2.声明式架构融合:

将MVVM、Clean Architecture、MVI整合,将单向数据流与响应式编程,确保状态管理的可预测,可调试。
3.工程化实践创新:

完整的模块化开发、测试、部署流水线编程,从代码编写到性能监控,实现了多环境的灵活配置管理。
4.性能优化突破:

使用启动、内存、网络、渲染优化方案,通过智能优化决策系统进行性能监控,最后完成自动调优。
实际应用中,需要根据项目规模和团队情况进行适当裁剪。对于小型项目,可以简化架构;对于大型复杂项目,可能需要引入更多的设计模式和基础设施。

关键技术点总结:

Kotlin协程和Flow处理异步操作,Hilt实现依赖注入,Jetpack Compose构建现代化UI,TensorFlow Lite集成AI能力,模块化架构提高编译速度,分层测试确保代码质量,性能监控保证用户体验。

这个技术栈结合当下较为流行的技术,注重可维护性、可扩展性和开发效率的平衡。

作者:高海川

原文链接:Android现代化技术栈剖析:架构、AI与工程化实践

Logo

有“AI”的1024 = 2048,欢迎大家加入2048 AI社区

更多推荐