【学术会议前沿信息|科研必备】 EI/Scopus检索|教育AI、机器人与智能制造、能源电力、智能电网、模式识别与图像分析多领域国际会议火热征稿!
【学术会议前沿信息|科研必备】 EI/Scopus检索|教育AI、机器人与智能制造、能源电力、智能电网、模式识别与图像分析多领域国际会议火热征稿!
·
【学术会议前沿信息|科研必备】 EI/Scopus检索|教育AI、机器人与智能制造、能源电力、智能电网、模式识别与图像分析多领域国际会议火热征稿!
【学术会议前沿信息|科研必备】 EI/Scopus检索|教育AI、机器人与智能制造、能源电力、智能电网、模式识别与图像分析多领域国际会议火热征稿!
文章目录
欢迎铁子们点赞、关注、收藏!
祝大家逢考必过!逢投必中!上岸上岸上岸!upupup
大多数高校硕博生毕业要求需要参加学术会议,发表EI或者SCI检索的学术论文会议论文。详细信息可扫描博文下方二维码 “
学术会议小灵通”或参考学术信息专栏:https://ais.cn/u/mmmiUz
前言
- 亲爱的硕博同学们,学术新征程已开启!在广州、常州、武汉、郑州等城市,国际会议邀你共探前沿科技,用创新成果闪耀学术舞台!
🎓 第三届信息化教育与人工智能国际学术会议(ICIEAI 2025)
- 2025 3rd International Conference on Information Education and Artificial Intelligence
- 时间地点:2025年12月12-14日丨中国·广州
- 亮点:ACM出版检索稳定,聚焦信息化教育与AI融合创新,搭建教育技术与人工智能跨界交流平台!
- 检索:ACM出版,提交EI Compendex、Scopus检索
- 适合投稿人群:教育技术、人工智能领域硕博生,探索智慧教育新模式与AI教育应用的创新者!
- 🎓 ICIEAI 2025 - 基于过程奖励的强化学习(PRIME)——这个示例模拟了一个简单的智能辅导系统,它通过过程奖励来指导学习代理(学生)解决数学问题,更关注推理过程而不仅仅是最终答案。
import numpy as np
class PrimeTutor:
"""
基于PRIME过程奖励的简易智能辅导模拟
参考文献:[citation:8]
"""
def __init__(self, steps=5):
self.steps = steps # 最大推理步数
self.process_rewards = [] # 过程奖励记录
def implicit_process_reward(self, step, action, correct_path):
"""
隐式过程奖励模型:评估每一步动作的质量
在完整上下文中,这通常由一个训练好的奖励模型提供
"""
if step >= len(correct_path):
return 0.0
# 简单的奖励:动作与正确路径的匹配程度
match_score = 1.0 if action == correct_path[step] else 0.2
# 随着步骤推进,奖励权重增加
step_weight = (step + 1) / len(correct_path)
return match_score * step_weight
def train_student(self, problem, correct_solution_path):
"""
训练学生解决问题,关注过程而非结果
"""
student_state = "start"
total_reward = 0
reasoning_process = []
print(f"问题: {problem}")
for step in range(self.steps):
# 学生根据当前状态选择动作(推理步骤)
if step < len(correct_solution_path):
# 模拟学生有80%概率选择正确步骤
if np.random.random() < 0.8:
action = correct_solution_path[step]
else:
action = f"alternative_step_{step}"
else:
action = "final_answer"
# 计算过程奖励
step_reward = self.implicit_process_reward(step, action, correct_solution_path)
total_reward += step_reward
self.process_rewards.append(step_reward)
reasoning_process.append(action)
print(f" 步骤 {step+1}: {action} | 奖励: {step_reward:.3f}")
if action == "final_answer":
break
# 结果奖励(传统方法只关注这个)
outcome_reward = 1.0 if reasoning_process[-1] == correct_solution_path[-1] else 0.0
total_reward += outcome_reward
print(f"总奖励: {total_reward:.3f} (过程: {sum(self.process_rewards):.3f}, 结果: {outcome_reward:.3f})")
return total_reward, reasoning_process
# 示例:训练学生解决数学问题
tutor = PrimeTutor()
correct_steps = ["define_variables", "setup_equation", "solve_equation", "verify_solution", "final_answer"]
reward, process = tutor.train_student("解方程: 2x + 5 = 15", correct_steps)
🤖 2025年机器人与智能制造技术国际会议(ISRIMT 2025)
- 2025 7th International Symposium on Robotics & Intelligent Manufacturing Technology
- 时间地点:2025年12月12-14日丨中国·常州
- 亮点:IEEE出版保障高效检索,立足长三角制造集群,深度探讨工业机器人、智能工厂与数字化制造!
- 检索:IEEE出版,收录IEEE Xplore,提交EI、Scopus检索
- 适合投稿人群:机器人与智能制造领域硕博生,致力于智能装备与工业互联网技术研发的工程师!
- 🤖 ISRIMT 2025 - 多专家增量学习(MDE-OIL)——这个示例展示了一个多专家增量学习框架,使机器人系统能够持续学习新任务而不会忘记旧知识,适用于智能制造中不断更新的工件识别。
import numpy as np
from sklearn.linear_model import LogisticRegression
from collections import defaultdict
class MultiExpertIncrementalLearner:
"""
多专家增量学习框架
参考文献:[citation:9]
"""
def __init__(self, feature_dim, n_experts=3):
self.feature_dim = feature_dim
self.n_experts = n_experts
self.experts = [LogisticRegression() for _ in range(n_experts)]
self.expert_performance = defaultdict(list)
self.shared_features = None
self.current_task_id = 0
def extract_shared_features(self, X):
"""
使用浅层共享特征提取器
在实际应用中,这可以是一个CNN的前几层
"""
# 简化的特征提取 - 实际应用可能使用神经网络
if self.shared_features is None:
self.shared_features = np.random.randn(self.feature_dim, 64) # 随机初始化特征提取权重
# 模拟特征提取过程
features = np.tanh(X @ self.shared_features)
return features
def calculate_leep_score(self, expert_id, X_new, y_new):
"""
计算LEEP分数来评估专家在新任务上的迁移能力
"""
if len(self.expert_performance[expert_id]) == 0:
return 0.0
# 简化版的LEEP分数计算
expert = self.experts[expert_id]
if hasattr(expert, 'classes_') and len(expert.classes_) > 0:
predictions = expert.predict_proba(X_new)
accuracy = np.mean(predictions.argmax(axis=1) == y_new)
# 结合历史表现
historical_perf = np.mean(self.expert_performance[expert_id][-5:]) if self.experts else 0.5
return 0.7 * accuracy + 0.3 * historical_perf
return 0.5
def learn_new_task(self, X_train, y_train, task_name):
"""
学习新任务并选择最适合的教师专家
"""
print(f"\n学习新任务: {task_name}")
# 提取共享特征
X_features = self.extract_shared_features(X_train)
# 评估各专家的迁移能力
expert_scores = []
for i in range(self.n_experts):
score = self.calculate_leep_score(i, X_features, y_train)
expert_scores.append((score, i))
print(f" 专家 {i} LEEP分数: {score:.3f}")
# 选择最佳教师专家
best_teacher_id = max(expert_scores)[1]
print(f" 选择专家 {best_teacher_id} 作为教师")
# 训练所有专家(在实际应用中,可能只训练部分专家)
for i in range(self.n_experts):
if i == best_teacher_id or len(self.expert_performance[i]) == 0:
# 教师专家或新专家,重新训练
self.experts[i].fit(X_features, y_train)
accuracy = self.experts[i].score(X_features, y_train)
else:
# 其他专家使用知识蒸馏
teacher_predictions = self.experts[best_teacher_id].predict_proba(X_features)
# 简化版的知识蒸馏 - 实际应用会更复杂
accuracy = 0.8 * self.expert_performance[i][-1] if self.expert_performance[i] else 0.6
self.expert_performance[i].append(accuracy)
self.current_task_id += 1
return best_teacher_id
# 示例:机器人在智能制造中持续学习识别新工件
np.random.seed(42)
feature_dim = 100
n_samples = 200
learner = MultiExpertIncrementalLearner(feature_dim=feature_dim, n_experts=3)
# 模拟学习一系列任务
tasks = ["轴承识别", "齿轮分类", "电路板检测"]
for task in tasks:
X_task = np.random.randn(n_samples, feature_dim)
y_task = np.random.randint(0, 3, n_samples) # 3个类别
teacher_id = learner.learn_new_task(X_task, y_task, task)
⚡ 2025年能源电力系统与智能电网技术国际学术会议(EPSSGT 2025)
- 2025 International Conference on Energy Power System and Smart Grid Technologies
- 时间地点:2025年12月19-21日丨中国·武汉
- 亮点:JPCS出版检索稳定,汇聚新能源与智能电网前沿技术,推动清洁能源与电力系统智能化发展!
- 检索:JPCS出版,提交EI Compendex、Scopus检索
- 适合投稿人群:能源电力与智能电网领域硕博生,专注于储能技术、绿色能源创新的研究者!
- ⚡ EPSSGT 2025 - 低复杂度Transformer用于电力预测——这个示例实现了一个低复杂度的Transformer模型,用于电力负载预测,在保证精度的同时大幅降低计算开销,适合资源受限的智能电网边缘设备。
import torch
import torch.nn as nn
import numpy as np
class LowComplexityTransformer(nn.Module):
"""
低复杂度Transformer用于电力负载预测
参考文献:[citation:4]
"""
def __init__(self, seq_len=24, feature_dim=5, d_model=64, n_heads=4, ff_dim=128):
super().__init__()
self.seq_len = seq_len
self.d_model = d_model
# 输入投影
self.input_projection = nn.Linear(feature_dim, d_model)
# 低秩注意力机制 - 复杂度从O(N²)降到O(N)
self.attention = LowRankAttention(d_model, n_heads)
# 前馈网络
self.ffn = nn.Sequential(
nn.Linear(d_model, ff_dim),
nn.ReLU(),
nn.Linear(ff_dim, d_model)
)
# 输出层
self.output_layer = nn.Linear(d_model, 1)
self.layer_norm1 = nn.LayerNorm(d_model)
self.layer_norm2 = nn.LayerNorm(d_model)
def forward(self, x):
# x形状: (batch_size, seq_len, feature_dim)
batch_size = x.size(0)
# 输入投影
x_proj = self.input_projection(x) # (batch_size, seq_len, d_model)
# 低秩注意力
attn_output = self.attention(x_proj)
x = self.layer_norm1(x_proj + attn_output)
# 前馈网络
ffn_output = self.ffn(x)
x = self.layer_norm2(x + ffn_output)
# 输出预测 - 最后一个时间步
output = self.output_layer(x[:, -1, :])
return output
class LowRankAttention(nn.Module):
"""
低秩注意力机制,降低计算复杂度
"""
def __init__(self, d_model, n_heads):
super().__init__()
self.d_model = d_model
self.n_heads = n_heads
self.head_dim = d_model // n_heads
# 低秩投影
self.rank = max(1, d_model // 4) # 压缩秩
self.query_proj = nn.Linear(d_model, self.rank, bias=False)
self.key_proj = nn.Linear(d_model, self.rank, bias=False)
self.value_proj = nn.Linear(d_model, d_model, bias=False)
self.out_proj = nn.Linear(d_model, d_model)
def forward(self, x):
batch_size, seq_len, _ = x.shape
# 低秩投影
Q_low = self.query_proj(x) # (batch_size, seq_len, rank)
K_low = self.key_proj(x) # (batch_size, seq_len, rank)
V = self.value_proj(x) # (batch_size, seq_len, d_model)
# 计算低秩注意力得分 - 复杂度O(N*rank)而不是O(N²)
attention_scores = torch.bmm(Q_low, K_low.transpose(1, 2)) # (batch_size, seq_len, seq_len)
attention_scores = attention_scores / (self.rank ** 0.5)
attention_weights = torch.softmax(attention_scores, dim=-1)
# 应用注意力
attended = torch.bmm(attention_weights, V) # (batch_size, seq_len, d_model)
output = self.out_proj(attended)
return output
def simulate_power_data(n_samples=1000, seq_len=24):
"""模拟电力负载数据"""
time_features = np.sin(2 * np.pi * np.arange(seq_len) / 24).reshape(1, -1, 1)
temperature = np.random.normal(20, 5, (n_samples, seq_len, 1))
weekday = np.random.randint(0, 7, (n_samples, seq_len, 1))
# 合成负载数据
base_load = 100 + 50 * time_features + 2 * temperature + 10 * (weekday < 5)
noise = np.random.normal(0, 5, base_load.shape)
load = base_load + noise
features = np.concatenate([time_features.repeat(n_samples, axis=0),
temperature, weekday], axis=2)
targets = load[:, -1, 0] # 预测最后一个时间点的负载
return torch.FloatTensor(features), torch.FloatTensor(targets)
# 示例:训练低复杂度Transformer进行电力预测
model = LowComplexityTransformer(seq_len=24, feature_dim=3, d_model=64)
criterion = nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
# 模拟训练过程
X, y = simulate_power_data(100)
pred = model(X)
loss = criterion(pred.squeeze(), y)
print(f"模型参数量: {sum(p.numel() for p in model.parameters()):,}")
print(f"初始损失: {loss.item():.4f}")
👁️ 2025第二届模式识别与图像分析国际学术会议(PRIA 2025)
- 2025 2nd International Conference on Pattern Recognition and Image Analysis
- 时间地点:2025年12月26-28日丨中国·郑州
- 亮点:SPIE出版助力光学工程应用,聚焦计算机视觉与图像分析热点,推动模式识别技术创新!
- 检索:SPIE出版,提交EI Compendex、Scopus检索
- 适合投稿人群:模式识别与图像分析领域硕博生,致力于计算机视觉与AI技术突破的科研工作者!
- 👁️ PRIA 2025 - RankCLIP多模态排序学习——这个示例实现了RankCLIP的核心思想,通过排序学习而不是传统的硬对齐来改进图像-文本的跨模态检索,提升模式识别任务的性能。
import torch
import torch.nn as nn
import numpy as np
class RankCLIP(nn.Module):
"""
RankCLIP: 基于排序学习的多模态表示学习
参考文献:[citation:1]
"""
def __init__(self, image_dim=512, text_dim=512, embed_dim=256, temperature=0.07):
super().__init__()
self.temperature = temperature
# 图像和文本编码器投影
self.image_proj = nn.Linear(image_dim, embed_dim)
self.text_proj = nn.Linear(text_dim, embed_dim)
# Plackett-Luce排序模型的参数
self.ranking_weight = nn.Parameter(torch.tensor(0.1)) # 可学习的排序权重
def plackett_luce_loss(self, scores, targets):
"""
Plackett-Luce排序损失:最大化正确排序的似然
scores: (batch_size, n_candidates) - 候选样本的匹配分数
targets: (batch_size,) - 正样本在候选中的索引
"""
batch_size, n_candidates = scores.shape
losses = []
for i in range(batch_size):
# 获取当前样本的分数和正样本索引
sample_scores = scores[i] # (n_candidates,)
positive_idx = targets[i]
# 计算Plackett-Luce概率
positive_score = sample_scores[positive_idx]
# 计算排序损失:-log(P(正样本排在第一))
# 使用top-1概率简化计算
log_denominator = torch.logsumexp(sample_scores / self.temperature, dim=0)
log_numerator = positive_score / self.temperature
loss = -log_numerator + log_denominator
losses.append(loss)
return torch.mean(torch.stack(losses))
def forward(self, image_features, text_features, text_candidates=None):
"""
image_features: (batch_size, image_dim)
text_features: (batch_size, text_dim) - 正样本文本特征
text_candidates: (batch_size, n_candidates, text_dim) - 候选文本特征
"""
# 投影到共享空间
image_emb = self.image_proj(image_features) # (batch_size, embed_dim)
text_emb = self.text_proj(text_features) # (batch_size, embed_dim)
# 归一化
image_emb = nn.functional.normalize(image_emb, p=2, dim=1)
text_emb = nn.functional.normalize(text_emb, p=2, dim=1)
if text_candidates is not None:
# 排序学习模式
batch_size, n_candidates, _ = text_candidates.shape
candidate_embs = self.text_proj(text_candidates.view(-1, text_candidates.size(2)))
candidate_embs = candidate_embs.view(batch_size, n_candidates, -1)
candidate_embs = nn.functional.normalize(candidate_embs, p=2, dim=2)
# 计算图像与所有候选文本的相似度
image_emb_expanded = image_emb.unsqueeze(1) # (batch_size, 1, embed_dim)
similarity_scores = torch.sum(image_emb_expanded * candidate_embs, dim=2) # (batch_size, n_candidates)
# 正样本在候选中的位置(假设第一个是正样本)
positive_targets = torch.zeros(batch_size, dtype=torch.long)
return similarity_scores, positive_targets
else:
# 传统对比学习模式
similarity = torch.matmul(image_emb, text_emb.T) # (batch_size, batch_size)
return similarity
def rank_consistent_loss(self, image_features, text_features, n_negatives=4):
"""
排序一致性损失函数
"""
batch_size = image_features.size(0)
# 为每个正样本生成负样本
text_candidates = text_features.unsqueeze(1).repeat(1, n_negatives + 1, 1)
# 用随机噪声替换负样本(实际应用中会用真实的负样本)
for i in range(batch_size):
for j in range(1, n_negatives + 1):
noise = torch.randn_like(text_features[i]) * 0.1
text_candidates[i, j] = text_features[(i + j) % batch_size] + noise
# 计算排序损失
scores, targets = self.forward(image_features, text_features, text_candidates)
ranking_loss = self.plackett_luce_loss(scores, targets)
return ranking_loss
# 示例:使用RankCLIP进行图像-文本检索训练
model = RankCLIP(image_dim=512, text_dim=512, embed_dim=256)
# 模拟训练数据
batch_size = 8
image_feats = torch.randn(batch_size, 512)
text_feats = torch.randn(batch_size, 512)
# 计算排序损失
loss = model.rank_consistent_loss(image_feats, text_feats, n_negatives=4)
print(f"RankCLIP排序损失: {loss.item():.4f}")
# 传统对比学习
similarity_matrix = model(image_feats, text_feats)
print(f"相似度矩阵形状: {similarity_matrix.shape}")
- 🎉 花城广州、智造常州、江城武汉、商都郑州,四城联动共绘学术蓝图!投稿通道已开启,快来与全球精英切磋交流,让你的研究在国际舞台大放异彩!
更多推荐



所有评论(0)