网站截图计算机视觉数据集-1,286张图片 网页分析 UI自动化 RPA 网页抓取 前端开发 自动化测试 Web AI
网站截图计算机视觉数据集-1,286张图片 网页分析 UI自动化 RPA 网页抓取 前端开发 自动化测试 Web AI
🌐 网站截图计算机视觉数据集-1,286张图片-文章末添加wx领取数据集
📦 已发布目标检测数据集合集(持续更新)
数据集名称 | 图像数量 | 应用方向 | 博客链接 |
---|---|---|---|
🔌 电网巡检检测数据集 | 1600 张 | 电力设备目标检测 | 点击查看 |
🔥 火焰 / 烟雾 / 人检测数据集 | 10000张 | 安防监控,多目标检测 | 点击查看 |
🚗 高质量车牌识别数据集 | 10,000 张 | 交通监控 / 车牌识别 | 点击查看 |
🌿 农田杂草航拍检测数据集 | 1,200 张 | 农业智能巡检 | 点击查看 |
🐑 航拍绵羊检测数据集 | 1,700 张 | 畜牧监控 / 航拍检测 | 点击查看 |
🌡️ 热成像人体检测数据集 | 15,000 张 | 热成像下的行人检测 | 点击查看 |
🦺 安全背心检测数据集 | 3,897 张 | 工地安全 / PPE识别 | 点击查看 |
🚀 火箭检测数据集介绍 | 12,000 张 | 智慧医疗 / 养老护理 | 点击查看 |
⚡ 绝缘子故障检测数据集 | 2,100张 | 无人机巡检/智能运维 | 点击查看 |
🚦交通标志检测数据集 | 1866张 | 智能驾驶系统/地图数据更新 | 点击查看 |
🚧 道路交通标志检测数据集 | 2,000张 | 智能地图与导航/交通监控与执法 | 点击查看 |
😷 口罩检测数据集 | 1,600张 | 疫情防控管理/智能门禁系统 | 点击查看 |
🦌 野生动物检测数据集 | 5,138张 | 野生动物保护监测/智能狩猎相机系统 | 点击查看 |
🍎 水果识别数据集 | 2,611张 | 图片智能零售/智慧农业 | 点击查看 |
🚁 无人机目标检测数据集 | 14,751张 | 无人机检测/航拍图像 | 点击查看 |
🚬 吸烟行为检测数据集 | 2,108张 | 公共场所禁烟监控/健康行为研究 | 点击查看 |
🛣️ 道路坑洞检测数据集 | 8,300张 | 智能道路巡检系统/车载安全监测设备 | 点击查看 |
🛠️ 井盖识别数据集 | 2,700 张 | 道路巡检 智能城市 | 点击查看 |
🧯 消防器材检测数据集 | 9,600 张 | 智慧安防系统 自动审核系统 | 点击查看 |
📱 手机通话检测数据集 | 3,100张 | 智能监控系统 驾驶安全监控 | 点击查看 |
🚜 建筑工地车辆检测数据集 | 28,000 张 | 施工现场安全监控 智能工地管理系统 | 点击查看 |
🏊 游泳人员检测数据集 | 4,500 张 | 游泳池安全监控 海滩救生系统 | 点击查看 |
🌿 植物病害检测数据集 | 6,200 张 | 智能农业监测系统 家庭园艺助手 | 点击查看 |
🐦 鸟类计算机视觉数据集 | 6,200 张 | 鸟类保护监测 生态环境评估 | 点击查看 |
🚁 无人机计算机视觉数据集 | 7,000 张 | 空域安全监管 无人机反制系统 | 点击查看 |
🛡️ Aerial_Tank_Images 坦克目标检测数据集 | 2,200 张 | 军事目标识别与侦查 卫星遥感目标识别 | 点击查看 |
♻️ 塑料可回收物检测数据集 | 10,000 张 | 智能垃圾分类系统 环保回收自动化 | 点击查看 |
🏢 建筑物实例分割数据集 | 9,700 张 | 城市规划与发展 智慧城市管理 | 点击查看 |
😊 人脸情绪检测数据集 | 9,400 张 | 智能客服系统 在线教育平台 | 点击查看 |
🔍 红外人员车辆检测数据集 | 53,000 张 | 智能安防监控系统 边境安全防控 | 点击查看 |
🚗 停车空间检测数据集 | 3,100 张 | 实时车位导航系统 智能停车收费管理 | 点击查看 |
♻ 垃圾分类检测数据集 | 15,000 张 | 智能垃圾分类 回收站与环保设施自动化 | 点击查看 |
✂️ 石头剪刀布手势识别数据集 | 3,100 张 | 智能游戏系统 人机交互界面 | 点击查看 |
🍌 腐烂香蕉检测数据集 | 4,267张 | 食品质量检测 智能农产品分拣系统 | 点击查看 |
🎰 扑克牌数字检测数据集 | 6,240 张 | 智能扑克游戏系统 赌场监控与安全 | 点击查看 |
🚗 车牌识别数据集 | 12,658张 | 智能交通管理系统 停车场自动化管理 | 点击查看 |
🏗️ 建筑设备检测数据集 | 6,247张 | 智能工地管理 施工安全监控 | 点击查看 |
🦺 个人防护装备检测数据集 | 7,892 张 | 工业安全监控 建筑工地安全管理 | 点击查看 |
⚓ 船舶检测数据集 | 7,542张 | 海洋交通监管 港口智能化管理 | 点击查看 |
🚁 空中救援任务数据集 | 6,742张 | 自然灾害应急救援 海上搜救任务 | 点击查看 |
✈️ 固定翼无人机检测数据集 | 8,247张 | 空域安全监管 机场反无人机系统 | 点击查看 |
😷 口罩检测数据集 | 8,432张 | 公共场所监控系统 企业复工防疫管理 | 点击查看 |
🚁 无人机检测数据集 | 6,847张 | 机场空域安全管理 重要设施防护监控 | 点击查看 |
✂️ 剪刀石头布手势识别数据集 | 2,376张 | 智能游戏开发 儿童教育娱乐 | 点击查看 |
🦺 安全背心识别数据集 | 4,892张 | 建筑工地安全监管 工业园区智能巡检 | 点击查看 |
🥤 饮料容器材质检测数据集 | 6,342张 | 智能垃圾分拣系统 生产线质量检测 | 点击查看 |
🚚 物流运输场景数据集 | 7,854张 | 智能仓储管理系统 物流车队智能调度 | 点击查看 |
🌡️ 热成像数据集 | 9,127张 | 夜间安防监控 工业设备检测 | 点击查看 |
🚗 车辆损伤识别数据集 | 6,742 张 | 保险理赔自动化 智能汽车维修评估 | 点击查看 |
🃏 扑克牌牌面识别数据集 | 8,432 张 | 智能扑克游戏系统 线上扑克直播辅助 | 点击查看 |
🔴 围棋棋子检测数据集 | 8,247 张 | 智能围棋对弈系统 围棋教学平台 | 点击查看 |
🚀 火箭检测数据集 | 6,425 张 | 航天发射监测 军事情报分析 | 点击查看 |
⚡ 摔跤跌倒检测数据集 | 9,354 张 | 体育安全监测系统 智能运动防护设备 | 点击查看 |
🚗 PKLot停车位检测数据集 | 12,416 张 | 计算机视觉 停车位检测 | 点击查看 |
🚗 车辆分类数据集 | 28,045 张 | 车辆识别 交通工具 | 点击查看 |
🚦 道路标识检测数据集 | 2,893 张 | 道路标识识别 自动驾驶 | 点击查看 |
📦 集装箱侧面分类数据集 | 2,408 张 | 集装箱识别 港口物流 | 点击查看 |
🚦 交通与道路标识检测数据集 | 10,000张 | 交通标志识别 自动驾驶 | 点击查看 |
🎯 COCO数据集 | 123,272张 | 目标检测 COCO | 点击查看 |
👥 人群检测数据集 | 7,300张 | 人流统计 行人检测 | 点击查看 |
🔢 MNIST手写数字识别数据集 | 70,000张 | 图像分类 手写识别 | 点击查看 |
🐦 鸟类物种识别数据集 | 9,880张 | 鸟类识别 生态保护 | 点击查看 |
🩺 皮肤癌检测数据集 | 9,900张 | 皮肤癌检测 医学影像 | 点击查看 |
🚗 汽车颜色分类数据集 | 2,004张 | 汽车识别 颜色检测 | 点击查看 |
⚔️ 暴力与非暴力行为识别数据集 | 10,000张 | 行为识别 暴力检测 | 点击查看 |
🌿 植物病害检测数据集 | 5,500张 | 农业AI 植物病害识别 | 点击查看 |
🧠 脑肿瘤检测数据集 | 9,900张 | 医学影像 脑肿瘤识别 | 点击查看 |
🏀 篮球场景目标检测数据集 | 4,100张 | 体育AI 篮球分析 | 点击查看 |
⚽ 足球场景目标检测数据集 | 6,700张 | 体育AI 足球分析 | 点击查看 |
🗑️ 垃圾分类检测数据集 | 10,464张 | 垃圾分类 环保科技 | 点击查看 |
🚁 无人机检测数据集 | 9,495张 | 无人机识别 低空安全 | 点击查看 |
😊 人类面部情绪识别数据集 | 9,400张 | 情绪识别 人脸识别 | 点击查看 |
🔥 烟雾与火灾检测数据集 | 536张 | 火灾检测 烟雾识别 | 点击查看 |
🔥 火灾检测计算机视觉数据集 | 10,967张 | 火灾检测 火灾预警 | 点击查看 |
📌 每篇文章附带模型指标、训练思路与推理部署建议,欢迎点赞收藏支持~
🌐 网站截图计算机视觉数据集介绍-1,286张图片
🌐 网站截图计算机视觉数据集介绍
📌 数据集概览
本项目是一个专注于网站截图中UI元素检测的计算机视觉数据集,共包含约 1,286 张图像,旨在训练模型在复杂网页布局中精准识别和定位各类前端组件。该数据集适用于构建自动化网页分析工具、UI测试系统及网页内容理解模型。
- 图像数量:1,286 张
- 类别数:8 类
- 适用任务:目标检测(Object Detection)
- 适配模型:YOLOv5、YOLOv8、Faster R-CNN、SSD 等主流框架
包含类别
类别 | 英文名称 | 描述 |
---|---|---|
按钮 | button | 可点击的交互按钮 |
输入框 | field | 文本输入或表单字段 |
标题 | heading | 页面中的标题文本元素 |
iframe | iframe | 嵌入式网页或广告容器 |
图像 | image | 显示的图片资源 |
标签 | label | 用于标注或说明的文字标签 |
链接 | link | 超链接文本或可点击区域 |
文本 | text | 普通文本内容(非标题/标签) |
数据集覆盖了现代网页中常见的UI元素类型,支持对网页结构进行语义化解析与自动化交互。
🎯 应用场景
该数据集非常适合以下应用场景与研究方向:
-
自动化网页测试
快速识别页面上的关键控件,辅助自动化测试脚本生成与执行。 -
网页内容理解与提取
提取结构化信息(如标题、按钮、表单等),用于搜索引擎优化或内容摘要。 -
无障碍辅助工具开发
为视障用户提供更准确的网页元素导航提示。 -
UI一致性检查
检查不同页面是否遵循统一的设计规范,提升用户体验。 -
智能机器人与RPA系统
支持机器人自动填写表单、点击按钮、浏览网页等操作。 -
网页安全分析
识别潜在恶意链接、隐藏iframe等安全隐患。 -
教育与科研用途
作为教学案例,帮助学生理解网页结构与计算机视觉结合的应用。
🖼 数据样本展示
以下展示部分数据集内的样本图片(均带有目标检测框):
数据集包含多种真实网站截图,具有高度多样性:
- 多类型网站:电商、新闻、社交、政府服务、论坛等
- 复杂布局:响应式设计、嵌套容器、浮动元素等
- 不同分辨率:涵盖移动端与桌面端视图
- 动态内容:部分截图包含JavaScript渲染后的界面状态
- 语言多样:包含英文、法文、中文等多种语言界面
场景覆盖广泛的互联网应用环境,数据质量高,适合训练鲁棒性强的网页UI检测模型。
使用建议
-
数据预处理优化
- 对高分辨率截图进行适当缩放以适应模型输入尺寸(推荐640x640或832x832)
- 处理透明背景、重叠元素带来的标注模糊问题
- 应用对比度增强、去噪等技术提升低质量截图效果
-
模型训练策略
- 使用在COCO或OpenImages上预训练的权重进行迁移学习
- 针对小目标(如图标、标签)使用FPN或PANet结构
- 考虑引入注意力机制以更好捕捉复杂布局中的关键元素
-
实际部署考虑
- 边缘设备优化:针对浏览器插件或轻量级工具进行模型压缩
- 实时处理能力:优化推理速度以支持在线分析需求
- 跨平台兼容性:确保模型可在Web、移动端、桌面端运行
-
应用场景适配
- 自动化测试工具集成:与Selenium、Playwright等框架结合使用
- 网页爬虫增强:辅助识别可交互元素,提高抓取效率
- UI设计审核系统:自动检测不符合规范的控件位置或样式
-
性能监控与改进
- 建立不同网站类型的性能基准测试
- 收集误检率较高的样本(如相似颜色按钮、遮挡元素)进行迭代优化
- 定期更新数据集以纳入新兴网页技术(如Web Components)
🌟 数据集特色
- 高质量标注:由专业标注团队完成,边界框精确,类别划分清晰
- 真实世界数据:全部来自真实网站截图,反映实际使用场景
- 多样化布局:涵盖静态与动态网页,体现现代Web设计趋势
- 技术兼容性:支持主流深度学习框架和部署平台
- 开放共享:可通过Roboflow平台轻松访问与下载
📈 商业价值
该数据集在以下商业领域具有重要价值:
- 软件测试公司:开发自动化UI测试解决方案
- RPA厂商:提升机器人对网页界面的理解与操作能力
- 网页开发工具提供商:构建智能代码生成器或调试助手
- 数字营销机构:分析竞争对手网站结构与用户交互路径
- 教育科技企业:用于编程教学中的可视化分析工具
🔗 技术标签
计算机视觉
目标检测
网页分析
UI自动化
RPA
网页抓取
前端开发
自动化测试
Web AI
Roboflow
注意: 本数据集适用于研究、教育和商业用途。使用时请遵守相关版权与隐私政策,避免侵犯网站所有者的合法权益。建议在实际应用中结合上下文逻辑进行结果验证,确保准确性。
YOLOv8 训练实战
本教程介绍如何使用 YOLOv8 对目标进行识别与检测。涵盖环境配置、数据准备、训练模型、模型推理和部署等全过程。
📦 1. 环境配置
建议使用 Python 3.8+,并确保支持 CUDA 的 GPU 环境。
# 创建并激活虚拟环境(可选)
python -m venv yolov8_env
source yolov8_env/bin/activate # Windows 用户使用 yolov8_env\Scripts\activate
安装 YOLOv8 官方库 ultralytics
pip install ultralytics
📁 2. 数据准备
2.1 数据标注格式(YOLO)
每张图像对应一个 .txt 文件,每行代表一个目标,格式如下:
<class_id> <x_center> <y_center> <width> <height>
所有值为相对比例(0~1)。
类别编号从 0 开始。
2.2 文件结构示例
datasets/
├── images/
│ ├── train/
│ └── val/
├── labels/
│ ├── train/
│ └── val/
2.3 创建 data.yaml 配置文件
path: ./datasets
train: images/train
val: images/val
nc: 11
names: ['Bent_Insulator', 'Broken_Insulator_Cap', '', ...]
🚀 3. 模型训练
YOLOv8 提供多种模型:yolov8n, yolov8s, yolov8m, yolov8l, yolov8x。可根据设备性能选择。
yolo detect train \
model=yolov8s.pt \
data=./data.yaml \
imgsz=640 \
epochs=50 \
batch=16 \
project=weed_detection \
name=yolov8s_crop_weed
参数 | 类型 | 默认值 | 说明 |
---|---|---|---|
model |
字符串 | - | 指定基础模型架构文件或预训练权重文件路径(.pt /.yaml ) |
data |
字符串 | - | 数据集配置文件路径(YAML 格式),包含训练/验证路径和类别定义 |
imgsz |
整数 | 640 | 输入图像的尺寸(像素),推荐正方形尺寸(如 640x640) |
epochs |
整数 | 100 | 训练总轮次,50 表示整个数据集会被迭代 50 次 |
batch |
整数 | 16 | 每个批次的样本数量,值越大需要越多显存 |
project |
字符串 | - | 项目根目录名称,所有输出文件(权重/日志等)将保存在此目录下 |
name |
字符串 | - | 实验名称,用于在项目目录下创建子文件夹存放本次训练结果 |
关键参数补充说明:
-
model=yolov8s.pt
- 使用预训练的 YOLOv8 small 版本(平衡速度与精度)
- 可用选项:
yolov8n.pt
(nano)/yolov8m.pt
(medium)/yolov8l.pt
(large)
-
data=./data.yaml
# 典型 data.yaml 结构示例 path: ../datasets/weeds train: images/train val: images/val names: 0: Bent_Insulator 1: Broken_Insulator_Cap 2: ... 3: ...
📈 4. 模型验证与测试
4.1 验证模型性能
yolo detect val \
model=runs/detect/yolov8s_crop_weed/weights/best.pt \
data=./data.yaml
参数 | 类型 | 必需 | 说明 |
---|---|---|---|
model |
字符串 | 是 | 要验证的模型权重路径(通常为训练生成的 best.pt 或 last.pt ) |
data |
字符串 | 是 | 与训练时相同的 YAML 配置文件路径,需包含验证集路径和类别定义 |
关键参数详解
-
model=runs/detect/yolov8s_crop_weed/weights/best.pt
- 使用训练过程中在验证集表现最好的模型权重(
best.pt
) - 替代选项:
last.pt
(最终epoch的权重) - 路径结构说明:
runs/detect/ └── [训练任务名称]/ └── weights/ ├── best.pt # 验证指标最优的模型 └── last.pt # 最后一个epoch的模型
- 使用训练过程中在验证集表现最好的模型权重(
-
data=./data.yaml
- 必须与训练时使用的配置文件一致
- 确保验证集路径正确:
val: images/val # 验证集图片路径 names: 0: crop 1: weed
常用可选参数
参数 | 示例值 | 作用 |
---|---|---|
batch |
16 | 验证时的批次大小 |
imgsz |
640 | 输入图像尺寸(需与训练一致) |
conf |
0.25 | 置信度阈值(0-1) |
iou |
0.7 | NMS的IoU阈值 |
device |
0/cpu | 选择计算设备 |
save_json |
True | 保存结果为JSON文件 |
典型输出指标
Class Images Instances P R mAP50 mAP50-95
all 100 752 0.891 0.867 0.904 0.672
crop 100 412 0.912 0.901 0.927 0.701
weed 100 340 0.870 0.833 0.881 0.643
4.2 推理测试图像
yolo detect predict \
model=runs/detect/yolov8s_crop_weed/weights/best.pt \
source=./datasets/images/val \
save=True
🧠 5. 自定义推理脚本(Python)
from ultralytics import YOLO
import cv2
# 加载模型
model = YOLO('runs/detect/yolov8s_crop_weed/weights/best.pt')
# 推理图像
results = model('test.jpg')
# 可视化并保存结果
results[0].show()
results[0].save(filename='result.jpg')
🛠 6. 部署建议
✅ 本地运行:通过 Python 脚本直接推理。
🌐 Web API:可用 Flask/FastAPI 搭建检测接口。
📦 边缘部署:YOLOv8 支持导出为 ONNX,便于在 Jetson、RKNN 等平台上部署。
导出示例:
yolo export model=best.pt format=onnx
📌 总结流程
阶段 | 内容 |
---|---|
✅ 环境配置 | 安装 ultralytics, PyTorch 等依赖 |
✅ 数据准备 | 标注图片、组织数据集结构、配置 YAML |
✅ 模型训练 | 使用命令行开始训练 YOLOv8 模型 |
✅ 验证评估 | 检查模型准确率、mAP 等性能指标 |
✅ 推理测试 | 运行模型检测实际图像目标 |
✅ 高级部署 | 导出模型,部署到 Web 或边缘设备 |
更多推荐
所有评论(0)