在这里插入图片描述

📦 已发布目标检测数据集合集(持续更新)

数据集名称 图像数量 应用方向 博客链接
🔌 电网巡检检测数据集 1600 张 电力设备目标检测 点击查看
🔥 火焰 / 烟雾 / 人检测数据集 10000张 安防监控,多目标检测 点击查看
🚗 高质量车牌识别数据集 10,000 张 交通监控 / 车牌识别 点击查看
🌿 农田杂草航拍检测数据集 1,200 张 农业智能巡检 点击查看
🐑 航拍绵羊检测数据集 1,700 张 畜牧监控 / 航拍检测 点击查看
🌡️ 热成像人体检测数据集 15,000 张 热成像下的行人检测 点击查看
🦺 安全背心检测数据集 3,897 张 工地安全 / PPE识别 点击查看
🚀 火箭检测数据集介绍 12,000 张 智慧医疗 / 养老护理 点击查看
⚡ 绝缘子故障检测数据集 2,100张 无人机巡检/智能运维 点击查看
🚦交通标志检测数据集 1866张 智能驾驶系统/地图数据更新 点击查看
🚧 道路交通标志检测数据集 2,000张 智能地图与导航/交通监控与执法 点击查看
😷 口罩检测数据集 1,600张 疫情防控管理/智能门禁系统 点击查看
🦌 野生动物检测数据集 5,138张 野生动物保护监测/智能狩猎相机系统 点击查看
🍎 水果识别数据集 2,611张 图片智能零售/智慧农业 点击查看
🚁 无人机目标检测数据集 14,751张 无人机检测/航拍图像 点击查看
🚬 吸烟行为检测数据集 2,108张 公共场所禁烟监控/健康行为研究 点击查看
🛣️ 道路坑洞检测数据集 8,300张 智能道路巡检系统/车载安全监测设备 点击查看
🛠️ 井盖识别数据集 2,700 张 道路巡检 智能城市 点击查看
🧯 消防器材检测数据集 9,600 张 智慧安防系统 自动审核系统 点击查看
📱 手机通话检测数据集 3,100张 智能监控系统 驾驶安全监控 点击查看
🚜 建筑工地车辆检测数据集 28,000 张 施工现场安全监控 智能工地管理系统 点击查看
🏊 游泳人员检测数据集 4,500 张 游泳池安全监控 海滩救生系统 点击查看
🌿 植物病害检测数据集 6,200 张 智能农业监测系统 家庭园艺助手 点击查看
🐦 鸟类计算机视觉数据集 6,200 张 鸟类保护监测 生态环境评估 点击查看
🚁 无人机计算机视觉数据集 7,000 张 空域安全监管 无人机反制系统 点击查看
🛡️ Aerial_Tank_Images 坦克目标检测数据集 2,200 张 军事目标识别与侦查 卫星遥感目标识别 点击查看
♻️ 塑料可回收物检测数据集 10,000 张 智能垃圾分类系统 环保回收自动化 点击查看
🏢 建筑物实例分割数据集 9,700 张 城市规划与发展 智慧城市管理 点击查看
😊 人脸情绪检测数据集 9,400 张 智能客服系统 在线教育平台 点击查看
🔍 红外人员车辆检测数据集 53,000 张 智能安防监控系统 边境安全防控 点击查看
🚗 停车空间检测数据集 3,100 张 实时车位导航系统 智能停车收费管理 点击查看
♻ 垃圾分类检测数据集 15,000 张 智能垃圾分类 回收站与环保设施自动化 点击查看
✂️ 石头剪刀布手势识别数据集 3,100 张 智能游戏系统 人机交互界面 点击查看
🍌 腐烂香蕉检测数据集 4,267张 食品质量检测 智能农产品分拣系统 点击查看
🎰 扑克牌数字检测数据集 6,240 张 智能扑克游戏系统 赌场监控与安全 点击查看
🚗 车牌识别数据集 12,658张 智能交通管理系统 停车场自动化管理 点击查看
🏗️ 建筑设备检测数据集 6,247张 智能工地管理 施工安全监控 点击查看
🦺 个人防护装备检测数据集 7,892 张 工业安全监控 建筑工地安全管理 点击查看
⚓ 船舶检测数据集 7,542张 海洋交通监管 港口智能化管理 点击查看
🚁 空中救援任务数据集 6,742张 自然灾害应急救援 海上搜救任务 点击查看
✈️ 固定翼无人机检测数据集 8,247张 空域安全监管 机场反无人机系统 点击查看
😷 口罩检测数据集 8,432张 公共场所监控系统 企业复工防疫管理 点击查看
🚁 无人机检测数据集 6,847张 机场空域安全管理 重要设施防护监控 点击查看
✂️ 剪刀石头布手势识别数据集 2,376张 智能游戏开发 儿童教育娱乐 点击查看
🦺 安全背心识别数据集 4,892张 建筑工地安全监管 工业园区智能巡检 点击查看
🥤 饮料容器材质检测数据集 6,342张 智能垃圾分拣系统 生产线质量检测 点击查看
🚚 物流运输场景数据集 7,854张 智能仓储管理系统 物流车队智能调度 点击查看
🌡️ 热成像数据集 9,127张 夜间安防监控 工业设备检测 点击查看
🚗 车辆损伤识别数据集 6,742 张 保险理赔自动化 智能汽车维修评估 点击查看
🃏 扑克牌牌面识别数据集 8,432 张 智能扑克游戏系统 线上扑克直播辅助 点击查看
🔴 围棋棋子检测数据集 8,247 张 智能围棋对弈系统 围棋教学平台 点击查看
🚀 火箭检测数据集 6,425 张 航天发射监测 军事情报分析 点击查看
⚡ 摔跤跌倒检测数据集 9,354 张 体育安全监测系统 智能运动防护设备 点击查看
🚗 PKLot停车位检测数据集 12,416 张 计算机视觉 停车位检测 点击查看
🚗 车辆分类数据集 28,045 张 车辆识别 交通工具 点击查看
🚦 道路标识检测数据集 2,893 张 道路标识识别 自动驾驶 点击查看
📦 集装箱侧面分类数据集 2,408 张 集装箱识别 港口物流 点击查看
🚦 交通与道路标识检测数据集 10,000张 交通标志识别 自动驾驶 点击查看
🎯 COCO数据集 123,272张 目标检测 COCO 点击查看
👥 人群检测数据集 7,300张 人流统计 行人检测 点击查看
🔢 MNIST手写数字识别数据集 70,000张 图像分类 手写识别 点击查看
🐦 鸟类物种识别数据集 9,880张 鸟类识别 生态保护 点击查看
🩺 皮肤癌检测数据集 9,900张 皮肤癌检测 医学影像 点击查看
🚗 汽车颜色分类数据集 2,004张 汽车识别 颜色检测 点击查看
⚔️ 暴力与非暴力行为识别数据集 10,000张 行为识别 暴力检测 点击查看
🌿 植物病害检测数据集 5,500张 农业AI 植物病害识别 点击查看
🧠 脑肿瘤检测数据集 9,900张 医学影像 脑肿瘤识别 点击查看
🏀 篮球场景目标检测数据集 4,100张 体育AI 篮球分析 点击查看

📌 每篇文章附带模型指标、训练思路与推理部署建议,欢迎点赞收藏支持~

在这里插入图片描述

⚽ 足球场景目标检测数据集介绍

📌 数据集概览

本项目是一个专注于足球比赛场景的目标检测数据集,共包含约 6,700 张图像,适用于训练深度学习模型在复杂运动环境中精准识别球员、裁判、足球等关键对象。该数据集广泛覆盖真实比赛场景,适合用于体育视频分析、智能转播系统和运动员行为研究。

  • 图像数量:6,700 张
  • 类别数:11 类
  • 适用任务:目标检测(Object Detection)
  • 适配模型:YOLOv5、YOLOv8、Faster R-CNN、SSD 等主流框架

包含类别

类别 英文名称 描述
Arbitre Referee 裁判员
Ballon Ball 足球
Football Football Field 足球场区域
Gardien Goalkeeper 守门员
Joueur Player 普通球员
Player Player (通用) 球员(泛指)
ball Ball (重复标签) 足球(备用标签)
big Big Object (可能为标注错误或特殊标记) 特殊大物体(需验证)
person Person 一般人物(非球员)
player Player (小写变体) 球员(变体标签)
refere Referee (拼写变体) 裁判(拼写变体)

数据集涵盖多种比赛视角与动态场景,能够有效支持高精度的实时检测需求,尤其适用于体育赛事自动化分析系统。

🎯 应用场景

该数据集非常适合以下应用场景:

  • 智能体育转播系统
    实现自动球员追踪、进球回放、战术分析等功能,提升观众观赛体验。

  • 运动员表现评估
    通过目标检测定位球员位置,辅助进行跑动距离、热力图生成等数据分析。

  • 足球训练辅助工具
    帮助教练团队分析球员站位、配合模式与防守策略。

  • 体育安防监控
    在大型体育场中识别异常行为(如闯入禁区、冲突事件),提升安全等级。

  • AI 视频剪辑与摘要生成
    自动提取关键事件(如射门、犯规)片段,用于短视频制作与内容推荐。

  • 教育与科研用途
    支持计算机视觉课程实验、多目标跟踪算法开发与评估。

🖼 数据样本展示

以下展示部分数据集内的样本图片(均带有目标检测框):
在这里插入图片描述
在这里插入图片描述

数据集包含多种真实足球比赛环境下的图像:

  • 多角度拍摄:包括俯视、侧边、近景、远景等多种摄像机视角
  • 动态动作捕捉:球员奔跑、争抢、射门、传球等典型动作均有覆盖
  • 不同光照条件:日间自然光、夜间灯光照明、雨天模糊场景等
  • 复杂背景干扰:观众席、广告牌、草坪纹理、遮挡情况多样
  • 多人密集场景:常见于攻防转换时刻,存在大量重叠与遮挡问题

场景丰富且具有挑战性,特别适合训练鲁棒性强的检测模型应对高密度人群与快速运动目标。

使用建议

  1. 数据预处理优化

    • 对夜间或低光照图像进行亮度增强与对比度调整
    • 处理模糊图像时可采用锐化滤波或超分辨率技术
    • 统一图像尺寸(推荐640x640或832x832)以提升训练效率
  2. 模型训练策略

    • 利用 COCO 或 ImageNet 预训练权重进行迁移学习
    • 采用多尺度训练策略以适应不同距离的球员检测
    • 针对“ball”、“player”等高频率类别增加采样权重,避免类别不平衡
  3. 实际部署考虑

    • 实时推理优化:针对直播系统优化推理速度(FPS > 30)
    • 边缘设备兼容:支持在NVIDIA Jetson、树莓派等嵌入式平台部署
    • 多摄像头融合:可用于构建全场域三维追踪系统
  4. 应用场景适配

    • 智能解说系统:结合语音合成实现自动评论生成
    • 移动端应用:开发手机端足球分析App,支持现场录像分析
    • 云端视频处理:大规模赛事视频批处理与结构化输出
  5. 性能监控与改进

    • 关注 mAP@50 指标,当前值为 47.4%,仍有提升空间
    • 收集误检与漏检样本(如被遮挡球员、高速移动球体)用于模型迭代
    • 定期更新标签体系,统一“Player”、“player”、“Joueur”等命名规范

🌟 数据集特色

  • 真实比赛数据:来源于真实足球赛事视频截图,具备高度真实性
  • 多样化视角:包含多个摄像机角度,利于立体感知建模
  • 高动态场景:捕捉快速移动目标,挑战性强
  • 标签丰富但需清洗:存在标签冗余(如 player / Player / joueur)和潜在错误(如 “big”),建议前期做标签归一化处理
  • 公开可用性:已在公开平台发布,支持快速下载与使用

📈 商业价值

该数据集在以下商业领域具有重要潜力:

  • 体育科技公司:开发智能分析软件、球员表现管理系统
  • 媒体与转播机构:提升赛事直播智能化水平
  • 电竞与虚拟现实:用于足球类游戏中的AI对手与环境模拟
  • 学校与俱乐部:作为训练辅助工具,提高战术理解能力
  • AI SaaS 平台:集成至体育数据分析云服务中

🔗 技术标签

计算机视觉 目标检测 体育AI 足球分析 实时检测 YOLO Faster R-CNN 智能转播 运动员追踪 多目标识别


注意: 本数据集适用于研究、教育和商业用途。使用时请尊重原始作者贡献,并遵守相关版权规定。建议在实际应用中结合专业体育知识进行结果校验与解释。

YOLOv8 训练实战

本教程介绍如何使用 YOLOv8 对目标进行识别与检测。涵盖环境配置、数据准备、训练模型、模型推理和部署等全过程。


📦 1. 环境配置

建议使用 Python 3.8+,并确保支持 CUDA 的 GPU 环境。

# 创建并激活虚拟环境(可选)
python -m venv yolov8_env
source yolov8_env/bin/activate  # Windows 用户使用 yolov8_env\Scripts\activate

安装 YOLOv8 官方库 ultralytics

pip install ultralytics

📁 2. 数据准备

2.1 数据标注格式(YOLO)

每张图像对应一个 .txt 文件,每行代表一个目标,格式如下:

<class_id> <x_center> <y_center> <width> <height>

所有值为相对比例(0~1)。

类别编号从 0 开始。

2.2 文件结构示例

datasets/
├── images/
│   ├── train/
│   └── val/
├── labels/
│   ├── train/
│   └── val/

2.3 创建 data.yaml 配置文件

path: ./datasets
train: images/train
val: images/val

nc: 11
names: ['Bent_Insulator', 'Broken_Insulator_Cap', '', ...]

🚀 3. 模型训练

YOLOv8 提供多种模型:yolov8n, yolov8s, yolov8m, yolov8l, yolov8x。可根据设备性能选择。

yolo detect train \
  model=yolov8s.pt \
  data=./data.yaml \
  imgsz=640 \
  epochs=50 \
  batch=16 \
  project=weed_detection \
  name=yolov8s_crop_weed
参数 类型 默认值 说明
model 字符串 - 指定基础模型架构文件或预训练权重文件路径(.pt/.yaml
data 字符串 - 数据集配置文件路径(YAML 格式),包含训练/验证路径和类别定义
imgsz 整数 640 输入图像的尺寸(像素),推荐正方形尺寸(如 640x640)
epochs 整数 100 训练总轮次,50 表示整个数据集会被迭代 50 次
batch 整数 16 每个批次的样本数量,值越大需要越多显存
project 字符串 - 项目根目录名称,所有输出文件(权重/日志等)将保存在此目录下
name 字符串 - 实验名称,用于在项目目录下创建子文件夹存放本次训练结果

关键参数补充说明:

  1. model=yolov8s.pt

    • 使用预训练的 YOLOv8 small 版本(平衡速度与精度)
    • 可用选项:yolov8n.pt(nano)/yolov8m.pt(medium)/yolov8l.pt(large)
  2. data=./data.yaml

    # 典型 data.yaml 结构示例
    path: ../datasets/weeds
    train: images/train
    val: images/val
    names:
      0: Bent_Insulator
      1: Broken_Insulator_Cap
      2: ...
      3: ...
    

📈 4. 模型验证与测试

4.1 验证模型性能

yolo detect val \
  model=runs/detect/yolov8s_crop_weed/weights/best.pt \
  data=./data.yaml
参数 类型 必需 说明
model 字符串 要验证的模型权重路径(通常为训练生成的 best.ptlast.pt
data 字符串 与训练时相同的 YAML 配置文件路径,需包含验证集路径和类别定义

关键参数详解

  1. model=runs/detect/yolov8s_crop_weed/weights/best.pt

    • 使用训练过程中在验证集表现最好的模型权重(best.pt
    • 替代选项:last.pt(最终epoch的权重)
    • 路径结构说明:
      runs/detect/
      └── [训练任务名称]/
          └── weights/
              ├── best.pt   # 验证指标最优的模型
              └── last.pt   # 最后一个epoch的模型
      
  2. data=./data.yaml

    • 必须与训练时使用的配置文件一致
    • 确保验证集路径正确:
      val: images/val  # 验证集图片路径
      names:
        0: crop
        1: weed
      

常用可选参数

参数 示例值 作用
batch 16 验证时的批次大小
imgsz 640 输入图像尺寸(需与训练一致)
conf 0.25 置信度阈值(0-1)
iou 0.7 NMS的IoU阈值
device 0/cpu 选择计算设备
save_json True 保存结果为JSON文件

典型输出指标

Class     Images  Instances      P      R      mAP50  mAP50-95
all        100       752      0.891  0.867    0.904    0.672
crop       100       412      0.912  0.901    0.927    0.701
weed       100       340      0.870  0.833    0.881    0.643

4.2 推理测试图像

yolo detect predict \
  model=runs/detect/yolov8s_crop_weed/weights/best.pt \
  source=./datasets/images/val \
  save=True

🧠 5. 自定义推理脚本(Python)

from ultralytics import YOLO
import cv2

# 加载模型
model = YOLO('runs/detect/yolov8s_crop_weed/weights/best.pt')

# 推理图像
results = model('test.jpg')

# 可视化并保存结果
results[0].show()
results[0].save(filename='result.jpg')

🛠 6. 部署建议

✅ 本地运行:通过 Python 脚本直接推理。

🌐 Web API:可用 Flask/FastAPI 搭建检测接口。

📦 边缘部署:YOLOv8 支持导出为 ONNX,便于在 Jetson、RKNN 等平台上部署。

导出示例:

yolo export model=best.pt format=onnx

📌 总结流程

阶段 内容
✅ 环境配置 安装 ultralytics, PyTorch 等依赖
✅ 数据准备 标注图片、组织数据集结构、配置 YAML
✅ 模型训练 使用命令行开始训练 YOLOv8 模型
✅ 验证评估 检查模型准确率、mAP 等性能指标
✅ 推理测试 运行模型检测实际图像目标
✅ 高级部署 导出模型,部署到 Web 或边缘设备
Logo

有“AI”的1024 = 2048,欢迎大家加入2048 AI社区

更多推荐