【本节目标】
1.vector的介绍及使用
2.vector深度剖析及模拟实现

1.vector的介绍及使用

1.1 vector的介绍

1. vector 是表示可变大小数组的序列容器。
2. 就像数组一样, vector 也采用的连续存储空间来存储元素。也就是意味着可以采用下标对 vector 的元素 进行访问,和数组一样高效。但是又不像数组,它的大小是可以动态改变的,而且它的大小会被容器自 动处理。
3. 本质讲, vector 使用动态分配数组来存储它的元素。当新元素插入时候,这个数组需要被重新分配大小 为了增加存储空间。其做法是,分配一个新的数组,然后将全部元素移到这个数组。就时间而言,这是 一个相对代价高的任务,因为每当一个新的元素加入到容器的时候,vector 并不会每次都重新分配大 小。
4. vector 分配空间策略: vector 会分配一些额外的空间以适应可能的增长,因为存储空间比实际需要的存 储空间更大。不同的库采用不同的策略权衡空间的使用和重新分配。但是无论如何,重新分配都应该是 对数增长的间隔大小,以至于在末尾插入一个元素的时候是在常数时间的复杂度完成的。
5. 因此, vector 占用了更多的存储空间,为了获得管理存储空间的能力,并且以一种有效的方式动态增 长。
6. 与其它动态序列容器相比( deque, list and forward_list ), vector 在访问元素的时候更加高效,在末 尾添加和删除元素相对高效。对于其它不在末尾的删除和插入操作,效率更低。比起list forward_list 统一的迭代器和引用更好。
使用 STL 的三个境界:能用,明理,能扩展 ,那么下面学习 vector ,我们也是按照这个方法去学习

当然也可以借助文档来学习 http://www.cplusplus.com/reference/vector/vector/

1.2 vector的使用

vector 学习时一定要学会查看文档 vector 在实际中非常的重要,在实际中我们熟悉常
见的接口就可以,下面列出了 哪些接口是要重点掌握的

1.2.1 vector的定义

#define _CRT_SECURE_NO_WARNINGS

#include <iostream>
using namespace std;
#include <vector>

////////////////////////////////////////////////////////////////////
//    vector的构造
////////////////////////////////////////////////////////////////////
int TestVector1()
{
	// constructors used in the same order as described above:
	vector<int> first;                                // empty vector of ints
	vector<int> second(4, 100);                       // four ints with value 100
	vector<int> third(second.begin(), second.end());  // iterating through second
	vector<int> fourth(third);                       // a copy of third

	// 下面涉及迭代器初始化的部分,我们学习完迭代器再来看这部分
	// the iterator constructor can also be used to construct from arrays:
	int myints[] = { 16,2,77,29 };
	vector<int> fifth(myints, myints + sizeof(myints) / sizeof(int));

	cout << "The contents of fifth are:";
	for (vector<int>::iterator it = fifth.begin(); it != fifth.end(); ++it)
		cout << ' ' << *it;
	cout << '\n';

	return 0;
}


1.2.2 vector iterator 的使用

////////////////////////////////////////////////////////////////////////
//  vector的迭代器
////////////////////////////////////////////////////////////////////////
void PrintVector(const vector<int>& v)
{
	// const对象使用const迭代器进行遍历打印
	vector<int>::const_iterator it = v.begin();
	while (it != v.end())
	{
		cout << *it << " ";
		++it;
	}
	cout << endl;
}

void TestVector2()
{
	// 使用push_back插入4个数据
	vector<int> v;
	v.push_back(1);
	v.push_back(2);
	v.push_back(3);
	v.push_back(4);

	// 使用迭代器进行遍历打印
	vector<int>::iterator it = v.begin();
	while (it != v.end())
	{
		cout << *it << " ";
		++it;
	}
	cout << endl;

	// 使用迭代器进行修改
	it = v.begin();
	while (it != v.end())
	{
		*it *= 2;
		++it;
	}

	// 使用反向迭代器进行遍历再打印
	// vector<int>::reverse_iterator rit = v.rbegin();
	auto rit = v.rbegin();
	while (rit != v.rend())
	{
		cout << *rit << " ";
		++rit;
	}
	cout << endl;

	PrintVector(v);
}

1.2.3 vector 空间增长问题

capacity 的代码在 vs g++ 下分别运行会发现, vs capacity 是按 1.5 倍增长的, g++ 是按 2 倍增长的 。 这个问题经常会考察,不要固化的认为,vector 增容都是 2 倍,具体增长多少是根据具体的需求定义 的。vs PJ 版本 STL g++ SGI 版本 STL
reserve 只负责开辟空间,如果确定知道需要用多少空间, reserve 可以缓解 vector 增容的代价缺陷问 题。 resize在开空间的同时还会进行初始化,影响 size
// 测试vector的默认扩容机制
void TestVectorExpand()
{
	size_t sz;
	vector<int> v;
	sz = v.capacity();
	cout << "making v grow:\n";
	for (int i = 0; i < 100; ++i)
	{
		v.push_back(i);
		if (sz != v.capacity())
		{
			sz = v.capacity();
			cout << "capacity changed: " << sz << '\n';
		}
	}
}
//vs:运行结果:vs下使用的STL基本是按照1.5倍方式扩容
//making foo grow :
//capacity changed : 1
//capacity changed : 2
//capacity changed : 3
//capacity changed : 4
//capacity changed : 6
//capacity changed : 9
//capacity changed : 13
//capacity changed : 19
//capacity changed : 28
//capacity changed : 42
//capacity changed : 63
//capacity changed : 94
//capacity changed : 141
//g++运行结果:linux下使用的STL基本是按照2倍方式扩容
//making foo grow :
//capacity changed : 1
//capacity changed : 2
//capacity changed : 4
//capacity changed : 8
//capacity changed : 16
//capacity changed : 32
//capacity changed : 64
//capacity changed : 128
// 如果已经确定vector中要存储元素大概个数,可以提前将空间设置足够
// 就可以避免边插入边扩容导致效率低下的问题了
void TestVectorExpandOP()
{
	vector<int> v;
	size_t sz = v.capacity();
	v.reserve(100); // 提前将容量设置好,可以避免一遍插入一遍扩容
	cout << "making bar grow:\n";
	for (int i = 0; i < 100; ++i)
	{
		v.push_back(i);
		if (sz != v.capacity())
		{
			sz = v.capacity();
			cout << "capacity changed: " << sz << '\n';
		}
	}
}

接口演示:

////////////////////////////////////////////////////////////////////////
//  vector的resize 和 reserve
////////////////////////////////////////////////////////////////////////
// reisze(size_t n, const T& data = T())
// 将有效元素个数设置为n个,如果时增多时,增多的元素使用data进行填充
// 注意:resize在增多元素个数时可能会扩容
void TestVector3()
{
	vector<int> v;

	// set some initial content:
	for (int i = 1; i < 10; i++)
		v.push_back(i);

	v.resize(5);
	v.resize(8, 100);
	v.resize(12);

	cout << "v contains:";
	for (size_t i = 0; i < v.size(); i++)
		cout << ' ' << v[i];
	cout << '\n';
}

// 测试vector的默认扩容机制
// vs:按照1.5倍方式扩容
// linux:按照2倍方式扩容
void TestVectorExpand()
{
	size_t sz;
	vector<int> v;
	sz = v.capacity();
	cout << "making v grow:\n";
	for (int i = 0; i < 100; ++i) 
	{
		v.push_back(i);
		if (sz != v.capacity()) 
		{
			sz = v.capacity();
			cout << "capacity changed: " << sz << '\n';
		}
	}
}

// 往vecotr中插入元素时,如果大概已经知道要存放多少个元素
// 可以通过reserve方法提前将容量设置好,避免边插入边扩容效率低
void TestVectorExpandOP()
{
	vector<int> v;
	size_t sz = v.capacity();
	v.reserve(100);   // 提前将容量设置好,可以避免一遍插入一遍扩容
	cout << "making bar grow:\n";
	for (int i = 0; i < 100; ++i) 
	{
		v.push_back(i);
		if (sz != v.capacity())
		{
			sz = v.capacity();
			cout << "capacity changed: " << sz << '\n';
		}
	}
}

1.2.4 vector 增删查改

////////////////////////////////////////////////////////////////////////
//  vector的增删改查
////////////////////////////////////////////////////////////////////////
// 尾插和尾删:push_back/pop_back
void TestVector4()
{
	vector<int> v;
	v.push_back(1);
	v.push_back(2);
	v.push_back(3);
	v.push_back(4);

	auto it = v.begin();
	while (it != v.end()) 
	{
		cout << *it << " ";
		++it;
	}
	cout << endl;

	v.pop_back();
	v.pop_back();

	it = v.begin();
	while (it != v.end()) 
	{
		cout << *it << " ";
		++it;
	}
	cout << endl;
}

// 任意位置插入:insert和erase,以及查找find
// 注意find不是vector自身提供的方法,是STL提供的算法
void TestVector5()
{
	// 使用列表方式初始化,C++11新语法
	vector<int> v{ 1, 2, 3, 4 };

	// 在指定位置前插入值为val的元素,比如:3之前插入30,如果没有则不插入
	// 1. 先使用find查找3所在位置
	// 注意:vector没有提供find方法,如果要查找只能使用STL提供的全局find
	auto pos = find(v.begin(), v.end(), 3);
	if (pos != v.end())
	{
		// 2. 在pos位置之前插入30
		v.insert(pos, 30);
	}

	vector<int>::iterator it = v.begin();
	while (it != v.end()) 
	{
		cout << *it << " ";
		++it;
	}
	cout << endl;

	pos = find(v.begin(), v.end(), 3);
	// 删除pos位置的数据
	v.erase(pos);

	it = v.begin();
	while (it != v.end()) {
		cout << *it << " ";
		++it;
	}
	cout << endl;
}

// operator[]+index 和 C++11中vector的新式for+auto的遍历
// vector使用这两种遍历方式是比较便捷的。
void TestVector6()
{
	vector<int> v{ 1, 2, 3, 4 };

	// 通过[]读写第0个位置。
	v[0] = 10;
	cout << v[0] << endl;

	// 1. 使用for+[]小标方式遍历
	for (size_t i = 0; i < v.size(); ++i)
		cout << v[i] << " ";
	cout << endl;

	vector<int> swapv;
	swapv.swap(v);

	cout << "v data:";
	for (size_t i = 0; i < v.size(); ++i)
		cout << v[i] << " ";
	cout << endl;

	// 2. 使用迭代器遍历
	cout << "swapv data:";
	auto it = swapv.begin();
	while (it != swapv.end())
	{
		cout << *it << " ";
		++it;
	}

	// 3. 使用范围for遍历
	for (auto x : v)
		cout << x << " ";
	cout << endl;
}

1.2.5 vector 迭代器失效问题。(重点)

迭代器的主要作用就是让算法能够不用关心底层数据结构,其底层实际就是一个指针,或者是对指针进行了 封装 ,比如: vector 的迭代器就是原生态指针 T* 。因此 迭代器失效,实际就是迭代器底层对应指针所指向的 空间被销毁了,而使用一块已经被释放的空间 ,造成的后果是程序崩溃 ( 如果继续使用已经失效的迭代器, 程序可能会崩溃 ) 。 对于vector 可能会导致其迭代器失效的操作有:
1. 会引起其底层空间改变的操作,都有可能是迭代器失效 ,比如: resize reserve insert assign 、 push_back等

#include <iostream>
using namespace std;
#include <vector>
int main()
{
	vector<int> v{ 1,2,3,4,5,6 };

	auto it = v.begin();

	// 将有效元素个数增加到100个,多出的位置使用8填充,操作期间底层会扩容
	// v.resize(100, 8);

	// reserve的作用就是改变扩容大小但不改变有效元素个数,操作期间可能会引起底层容量改变
	// v.reserve(100);

	// 插入元素期间,可能会引起扩容,而导致原空间被释放
	// v.insert(v.begin(), 0);
	// v.push_back(8);

	// 给vector重新赋值,可能会引起底层容量改变
	v.assign(100, 8);

	/*
	出错原因:以上操作,都有可能会导致vector扩容,也就是说vector底层原理旧空间被释放掉,
   而在打印时,it还使用的是释放之间的旧空间,在对it迭代器操作时,实际操作的是一块已经被释放的
   空间,而引起代码运行时崩溃。
	解决方式:在以上操作完成之后,如果想要继续通过迭代器操作vector中的元素,只需给it重新
   赋值即可。
	*/
	while (it != v.end())
	{
		cout << *it << " ";
		++it;
	}
	cout << endl;
	return 0;
}
2. 指定位置元素的删除操作 - -erase

#include <iostream>
using namespace std;
#include <vector>
int main()
{
	int a[] = { 1, 2, 3, 4 };
	vector<int> v(a, a + sizeof(a) / sizeof(int));
	// 使用find查找3所在位置的iterator
	vector<int>::iterator pos = find(v.begin(), v.end(), 3);
	// 删除pos位置的数据,导致pos迭代器失效。
	v.erase(pos);
	cout << *pos << endl; // 此处会导致非法访问
	return 0;
}
erase 删除 pos 位置元素后, pos 位置之后的元素会往前搬移,没有导致底层空间的改变,理论上讲迭代 器不应该会失效,但是:如果pos 刚好是最后一个元素,删完之后 pos 刚好是 end 的位置,而 end 位置是 没有元素的,那么pos 就失效了。因此删除 vector 中任意位置上元素时, vs 就认为该位置迭代器失效 了。
以下代码的功能是删除 vector 中所有的偶数,请问那个代码是正确的,为什么?

#include <iostream>
using namespace std;
#include <vector>
int main()
{
	int a[] = { 1, 2, 3, 4 };
	vector<int> v(a, a + sizeof(a) / sizeof(int));
	// 使用find查找3所在位置的iterator
	vector<int>::iterator pos = find(v.begin(), v.end(), 3);
	// 删除pos位置的数据,导致pos迭代器失效。
	v.erase(pos);
	cout << *pos << endl; // 此处会导致非法访问
	return 0;
}

#include <iostream>
using namespace std;
#include <vector>
int main()
{
	vector<int> v{ 1, 2, 3, 4 };
	auto it = v.begin();
	while (it != v.end())
	{
		if (*it % 2 == 0)
			v.erase(it);
		++it;
	}

	return 0;
}
int main()
{
	vector<int> v{ 1, 2, 3, 4 };
	auto it = v.begin();
	while (it != v.end())
	{
		if (*it % 2 == 0)
			it = v.erase(it);
		else
			++it;
	}
	return 0;
}
3. 注意: Linux 下, g++ 编译器对迭代器失效的检测并不是非常严格,处理也没有 vs 下极端。

#include <iostream>
using namespace std;
#include <vector>
int main()
{
	vector<int> v{ 1, 2, 3, 4 };
	auto it = v.begin();
	while (it != v.end())
	{
		if (*it % 2 == 0)
			v.erase(it);
		++it;
	}

	return 0;
}
int main()
{
	vector<int> v{ 1, 2, 3, 4 };
	auto it = v.begin();
	while (it != v.end())
	{
		if (*it % 2 == 0)
			it = v.erase(it);
		else
			++it;
	}
	return 0;
}


// 1. 扩容之后,迭代器已经失效了,程序虽然可以运行,但是运行结果已经不对了
int main()
{
	vector<int> v{ 1,2,3,4,5 };
	for (size_t i = 0; i < v.size(); ++i)
		cout << v[i] << " ";
	cout << endl;
	auto it = v.begin();
	cout << "扩容之前,vector的容量为: " << v.capacity() << endl;
	// 通过reserve将底层空间设置为100,目的是为了让vector的迭代器失效 
	v.reserve(100);
	cout << "扩容之后,vector的容量为: " << v.capacity() << endl;

	// 经过上述reserve之后,it迭代器肯定会失效,在vs下程序就直接崩溃了,但是linux下不会
	// 虽然可能运行,但是输出的结果是不对的
	while (it != v.end())
	{
		cout << *it << " ";
		++it;
	}
	cout << endl;
	return 0;
}
程序输出:
1 2 3 4 5
扩容之前,vector的容量为: 5
扩容之后,vector的容量为 : 100
0 2 3 4 5 409 1 2 3 4 5
// 2. erase删除任意位置代码后,linux下迭代器并没有失效
// 因为空间还是原来的空间,后序元素往前搬移了,it的位置还是有效的
#include <vector>
#include <algorithm>
int main()
{
	vector<int> v{ 1,2,3,4,5 };
	vector<int>::iterator it = find(v.begin(), v.end(), 3);
	v.erase(it)
		cout << *it << endl;
	while (it != v.end())
	{
		cout << *it << " ";
		++it;
	}
	cout << endl;
	return 0;
}
程序可以正常运行,并打印:
4
4 5

// 3: erase删除的迭代器如果是最后一个元素,删除之后it已经超过end
// 此时迭代器是无效的,++it导致程序崩溃
int main()
{
	vector<int> v{ 1,2,3,4,5 };
	// vector<int> v{1,2,3,4,5,6};
	auto it = v.begin();
	while (it != v.end())
	{
		if (*it % 2 == 0)
			v.erase(it);
		++it;
	}
	for (auto e : v)
		cout << e << " ";
	cout << endl;
	return 0;
}
========================================================
// 使用第一组数据时,程序可以运行
[sly@VM - 0 - 3 - centos 20220114]$ g++ testVector.cpp - std = c++11
[sly@VM - 0 - 3 - centos 20220114]$ . / a.out
1 3 5
======================================================== =
// 使用第二组数据时,程序最终会崩溃
[sly@VM - 0 - 3 - centos 20220114]$ vim testVector.cpp
[sly@VM - 0 - 3 - centos 20220114]$ g++ testVector.cpp - std = c++11
[sly@VM - 0 - 3 - centos 20220114]$ . / a.out
Segmentation fault
从上述三个例子中可以看到: SGI STL 中,迭代器失效后,代码并不一定会崩溃,但是运行结果肯定不 对,如果it 不在 begin end 范围内,肯定会崩溃的。

4. vector 类似, string 在插入 + 扩容操作 +erase 之后,迭代器也会失效

#include <string>
void TestString()
{
	string s("hello");
	auto it = s.begin();
	// 放开之后代码会崩溃,因为resize到20会string会进行扩容
	// 扩容之后,it指向之前旧空间已经被释放了,该迭代器就失效了
	// 后序打印时,再访问it指向的空间程序就会崩溃
	//s.resize(20, '!');
	while (it != s.end())
	{
		cout << *it;
		++it;
	}
	cout << endl;
	it = s.begin();
	while (it != s.end())
	{
		it = s.erase(it);
		// 按照下面方式写,运行时程序会崩溃,因为erase(it)之后
		// it位置的迭代器就失效了
		// s.erase(it); 
		++it;
	}
}
迭代器失效解决办法:在使用前,对迭代器重新赋值即可.

2.vector深度剖析及模拟实现

2.1 std::vector的核心框架接口的模拟实现xyl::vector

#pragma once
#include <assert.h>

namespace xyl
{
	template <class T>
	
	class vector                                                                                                                                                                                                                     
	{
	public:
		typedef T* iterator;
			typedef const T* const_iterator;


		vector()
			:_start(nullptr)
			, _finish ( nullptr)
			, _endOfStorage (nullptr)
		{
			
		}

		vector(int n, const T& value = T())
             :_start(nullptr)
             , _finish ( nullptr)
             , _endOfStorage (nullptr)
		{
			resize(n, value);
		}

		template<class InputIterator>

		vector(InputIterator first, InputIterator last)
            :_start(nullptr)
            , _finish ( nullptr)
            , _endOfStorage (nullptr)
		{
			
			size_t  sz = last-first;
			T* tmp = new T[sz];
			for (size_t i = 0;i < sz;i++)
			{
				tmp[i] = first[i];
			}
			//memcpy(tmp, first, sizeof(T) * (sz));
			_start = tmp;
			_finish = _start + sz;
			_endOfStorage = _finish;
		}
		vector( vector<T>& v)
			:_start(nullptr)
			, _finish(nullptr)
			, _endOfStorage(nullptr)
		{
			size_t sz= v.size();
			size_t cp = v.capacity();
			_start = new T[cp];
			for (size_t i = 0;i < sz;i++)
			{
				_start[i] = v._start[i];
			}
			//memcpy(tmp, v._start, sizeof(T) * (sz));
			
			_finish = _start + sz;
			_endOfStorage = _start+ cp;
			
		}

		vector<T>& operator= (vector<T> v)
		{
			/*size_t sz = v.size();
			size_t cp = v.capacity();
			T* tmp = new T[cp];
			memcpy(tmp, v._start, sizeof(T) * (sz));
			_start = tmp;
			_finish = _start + sz;
			_endOfStorage = _start + cp;*/
			swap(v);

			return *this;
		}

		void reserve(size_t n)
		{
			if (n >= capacity())
			{
				size_t sz = size();
				T* tmp = new T[n];
				if (_start)
				{
					for (size_t i=0;i < sz;i++)
					{
						tmp[i] = _start[i];
					}
					//memcpy(tmp, _start, sizeof(T)*sz);
					delete[]_start;
				}
				_start = tmp;
				_finish = _start + sz;
				_endOfStorage = _start + n;
			}
		}
		void resize(size_t n, const T& value = T())
		{
		
		/*	for (size_t i = 0;i < n;i++)
			{
				push_back(value);
			}*/
			if (n < size())
			{
				_finish = _start + n;			
			}
			else
			{
				reserve(n);
				while (_finish != _start + n)
				{
					*_finish = value;
					_finish++;
				}
			}
		
		}
		void push_back(const T& x)
		{
			if (_finish == _endOfStorage)
			{
				size_t newcapacity =capacity()== 0 ? 4 : capacity() * 2;
				reserve(newcapacity);
			}
			*_finish = x;
			_finish++;
			
		}
		void pop_back()
		{
			assert(size());
			//_finish -= 1;
			erase(end()-1);
		}

		void swap(vector<T>& v)
		{
			
			std::swap(_start, v._start);
			std::swap(_finish, v._finish);
			std::swap(_endOfStorage, v._endOfStorage);
		}
		iterator insert(iterator pos, const T& x)
		{
			assert(pos >= _start && pos <= _finish);
			if (_finish==_endOfStorage)
			{
				size_t len = pos-_start;
				size_t newcapacity = capacity() == 0 ? 4 : capacity() * 2;
				reserve(newcapacity);
				pos = _start + len;
			}
			iterator end = _finish - 1;
			while (end >= pos)
			{
				*(end + 1) = *end;
				end--;
			}
			*pos = x;
			++_finish;
			return pos;
		}

		iterator erase(iterator pos)
		{
			assert(pos >= _start && pos <= _finish);
			iterator p1 = pos;
			iterator end = _finish - 1;
			while (p1<end )
			{
				*p1 = *(p1+1);
			     p1++;
			}
			_finish--;
			return pos;
		}

		size_t capacity()
		{
			return _endOfStorage - _start;
		}

		size_t size()
		{
			return _finish - _start;
		}

		iterator begin()
		{
			return _start;
		}

		iterator end()
		{
			return _finish;
		}

		const_iterator begin() const
		{
			return _start;
		}

		const_iterator end() const
		{
			return _finish;
		}
		const_iterator cbegin()
		{
			return _start;
		}

		const_iterator cend() const
		{
			return _finish;
		}
		T& operator[](size_t pos)
		{
			return _start[pos];
		}

		const T& operator[](size_t pos)const
		{
			return _start[pos];
		}
		~vector()
		{
			if (_start)
			{
				delete[]_start;
				_start = _finish = _endOfStorage = nullptr;
			}
		
		}

	private:
		iterator _start; // 指向数据块的开始

		iterator _finish; // 指向有效数据的尾

		iterator _endOfStorage;// 指向存储容量的尾
	};
}

测试部分

#include <iostream>
//#include<vector>
#include "vector.h"

using namespace std;
void test_vector1()
{
	xyl::vector<int> v1;
	v1.push_back(1);
	v1.push_back(2);
	v1.push_back(3);
	v1.push_back(4);
	v1.push_back(5);
	v1.push_back(6);
	v1.push_back(7);
	for (auto e : v1)
	{
		cout << e << " ";
	}
	cout << endl;
	xyl::vector<int> v2(5,100);
	for (auto e : v2)
	{
		cout << e << " ";
	}
	cout << endl;
	xyl::vector<int> v3(v1.begin(), v1.end());
	for (auto e : v3)
	{
		cout << e << " ";
	}
	xyl::vector<int> v4(v3);
	cout << endl;
	for (auto e : v4)
	{
		cout << e << " ";
	}
	xyl::vector<int> v5;
	cout << endl;
	v5 = v4;
	for (auto e : v5)
	{
		cout << e << " ";
	}
	cout << endl;
	for (int i = 0;i < v5.size();i++)
	{
		cout << v5[i]<< " ";
	}
}
void test_vector2()
{
	xyl::vector<int> v1;
	v1.push_back(1);
	v1.push_back(2);
	v1.push_back(3);
	v1.push_back(4);
	v1.push_back(5);
	v1.push_back(4);
	v1.push_back(100);
	for (auto e : v1)
	{
		cout << e << " ";
	}
	cout << endl;
	v1.pop_back();
	for (auto e : v1)
	{
		cout << e << " ";
	}
	cout << endl;
	xyl::vector<int> v2;
	v1.swap(v2);
	for (auto e : v1)
	{
		cout << e << " ";
	}
	cout << endl;
	for (auto e : v2)
	{
		cout << e << " ";
	}
	cout << endl;
	xyl::vector<int> v3;
	v3.push_back(1);
	v3.push_back(4);
	v3.push_back(3);
	v3.push_back(4);
	v3.push_back(500);
	v3.push_back(4);
	v3.push_back(100);
	v3.insert(v3.begin()+2, 5);
	for (auto e : v3)
	{
		cout << e << " ";
	}
	cout << endl;
	v3.erase(v3.begin() + 2);
	for (auto e : v3)
	{
		cout << e << " ";
	}
}
void test_vector3()
{
	xyl::vector<int> v1;
	v1.push_back(1);
	v1.push_back(2);
	v1.push_back(3);
	v1.push_back(4);
	v1.push_back(5);
	v1.push_back(4);
	v1.push_back(100);

	for (auto e : v1)
	{
		cout << e << " ";
	}

	cout << endl;

	v1.erase(v1.end());

	for (auto e : v1)
	{
		cout << e << " ";
	}
}
void test_vector4()
{
	xyl::vector<int> v1;
	v1.resize(10);

	for (auto e : v1)
	{
		cout << e << " ";
	}
}
void test_vector5()
{
	xyl::vector<string> v1;
	v1.push_back("1111111111");
	v1.push_back("2222222222");
	v1.push_back("3333333333");
	v1.push_back("4444444444");
	for (auto e : v1)
	{
		cout << e << ' ';
	}

	cout << endl;

	xyl::vector<string> v2(v1);

	for (auto e : v2)
	{
		cout << e << ' ';
	}

	cout << endl;

	xyl::vector<string> v3(v1.begin(),v1.end());

	for (auto e : v3)
	{
		cout << e << ' ';
	}
}
int main()
{
	test_vector5();
	return 0;
}

2.2 使用memcpy拷贝问题

假设模拟实现的 vector 中的 reserve 接口中,使用 memcpy 进行的拷贝,以下代码会发生什么问题?

int main()
{
	xyl::vector<bite::string> v;
	v.push_back("1111");
	v.push_back("2222");
	v.push_back("3333");
	return 0;
}
问题分析:
1. memcpy 是内存的二进制格式拷贝,将一段内存空间中内容原封不动的拷贝到另外一段内存空间中
2. 如果拷贝的是内置类型的元素, memcpy 既高效又不会出错,但如果拷贝的是自定义类型元素,并且自 定义类型元素中涉及到资源管理时,就会出错,因为memcpy 的拷贝实际是浅拷贝。

结论:如果对象中涉及到资源管理时,千万不能使用 memcpy 进行对象之间的拷贝,因为 memcpy 浅拷贝,否则可能会引起内存泄漏甚至程序崩溃。

2.3动态二维数组理解

// 以杨辉三角的前n行为例:假设n为5
void test2vector(size_t n)
{
	// 使用vector定义二维数组vv,vv中的每个元素都是vector<int>
	bit::vector<bit::vector<int>> vv(n);

	// 将二维数组每一行中的vecotr<int>中的元素全部设置为1
	for (size_t i = 0; i < n; ++i)
		vv[i].resize(i + 1, 1);
	// 给杨辉三角出第一列和对角线的所有元素赋值
	for (int i = 2; i < n; ++i)
	{
		for (int j = 1; j < i; ++j)
		{
			vv[i][j] = vv[i - 1][j] + vv[i - 1][j - 1];
		}
	}
}
bit::vector<bit::vector<int>> vv(n) ; 构造一个 vv 动态二维数组, vv 中总共有 n 个元素,每个元素都是 vector 类 型的,每行没有包含任何元素,如果n 5 时如下所示:

vv 中元素填充完成之后,如下图所示:

使用标准库中 vector 构建动态二维数组时与上图实际是一致的

Logo

有“AI”的1024 = 2048,欢迎大家加入2048 AI社区

更多推荐