No module named ‘utilities‘如何解决?
No module named 'utilities'
·
在同文件目录下创建utilities.py文件
之后写入import utilities时既不会报错
个人思考是utilities.py是原作者自己定义的一个计算包,python官方中没有这个库的,pip是下载不了的,使用jupyter notebook时仍然会报错
utilities.py文件代码如下
import numpy as np
import matplotlib.pyplot as plt
from sklearn import model_selection
def load_data(input_file):
X = []
y = []
with open(input_file, 'r') as f:
for line in f.readlines():
data = [float(x) for x in line.split(',')]
X.append(data[:-1])
y.append(data[-1])
X = np.array(X)
y = np.array(y)
return X, y
def plot_classifier(classifier, X, y, title='Classifier boundaries', annotate=False):
# define ranges to plot the figure
x_min, x_max = min(X[:, 0]) - 1.0, max(X[:, 0]) + 1.0
y_min, y_max = min(X[:, 1]) - 1.0, max(X[:, 1]) + 1.0
# denotes the step size that will be used in the mesh grid
step_size = 0.01
# define the mesh grid
x_values, y_values = np.meshgrid(np.arange(x_min, x_max, step_size), np.arange(y_min, y_max, step_size))
# compute the classifier output
mesh_output = classifier.predict(np.c_[x_values.ravel(), y_values.ravel()])
# reshape the array
mesh_output = mesh_output.reshape(x_values.shape)
# Plot the output using a colored plot
plt.figure()
# Set the title
plt.title(title)
# choose a color scheme you can find all the options
# here: http://matplotlib.org/examples/color/colormaps_reference.html
plt.pcolormesh(x_values, y_values, mesh_output, cmap=plt.cm.GnBu)
# Overlay the training points on the plot
plt.scatter(X[:, 0], X[:, 1], c=y, s=80, edgecolors='black', linewidth=1, cmap=plt.cm.Paired)
# specify the boundaries of the figure
plt.xlim(x_values.min(), x_values.max())
plt.ylim(y_values.min(), y_values.max())
# specify the ticks on the X and Y axes
plt.xticks(())
plt.yticks(())
if annotate:
for x, y in zip(X[:, 0], X[:, 1]):
# Full documentation of the function available here:
# http://matplotlib.org/api/text_api.html#matplotlib.text.Annotation
plt.annotate(
'(' + str(round(x, 1)) + ',' + str(round(y, 1)) + ')',
xy = (x, y), xytext = (-15, 15),
textcoords = 'offset points',
horizontalalignment = 'right',
verticalalignment = 'bottom',
bbox = dict(boxstyle = 'round,pad=0.6', fc = 'white', alpha = 0.8),
arrowprops = dict(arrowstyle = '-', connectionstyle = 'arc3,rad=0'))
# Print performance metrics输出性能指标
def print_accuracy_report(classifier, X, y, num_validations=5):
accuracy = model_selection.cross_val_score(classifier,
X, y, scoring='accuracy', cv=num_validations)
print ("Accuracy: " + str(round(100*accuracy.mean(), 2)) + "%")
f1 = model_selection.cross_val_score(classifier,
X, y, scoring='f1_weighted', cv=num_validations)
print ("F1: " + str(round(100*f1.mean(), 2)) + "%")
precision = model_selection.cross_val_score(classifier,
X, y, scoring='precision_weighted', cv=num_validations)
print ("Precision: " + str(round(100*precision.mean(), 2)) + "%")
recall = model_selection.cross_val_score(classifier,
X, y, scoring='recall_weighted', cv=num_validations)
print ("Recall: " + str(round(100*recall.mean(), 2)) + "%")
更多推荐



所有评论(0)