2022秋季《人工智能》_ch08
题目基于信息增益,对下述数据集进行决策树构建,描述过程一个关于配眼镜的一个决策分类所需要的数据,数据集包含4属性:age, astigmatism, trear-prod-rate为输入特征,contact-lenses为决策属性。属性集A={AGE,AST,TEA}A=\{AGE,AST,TEA\}A={AGE,AST,TEA},类别为CONCONCON。计算根节点的信息熵Ent(D)=−(21
题目
基于信息增益,对下述数据集进行决策树构建,描述过程
一个关于配眼镜的一个决策分类所需要的数据,数据集包含4属性:age, astigmatism, trear-prod-rate为输入特征,contact-lenses为决策属性。

属性集A={AGE,AST,TEA}A=\{AGE,AST,TEA\}A={AGE,AST,TEA},类别为CONCONCON。计算根节点的信息熵
Ent(D)=−(212log2212+312log2312+712log2712)=1.384 Ent(D)=-(\frac{2}{12}\log_2{\frac{2}{12}}+\frac{3}{12}\log_2{\frac{3}{12}}+\frac{7}{12}\log_2{\frac{7}{12}})=1.384 Ent(D)=−(122log2122+123log2123+127log2127)=1.384
计算每个属性的信息熵和信息增益,记p(soft)=p1,p(hard)=p2,p(none)=p3p(soft)=p_1,p(hard)=p_2,p(none)=p_3p(soft)=p1,p(hard)=p2,p(none)=p3,
-
AGEAGEAGE
有三个可能取值{young,pre−pre,pre}\{young,pre-pre,pre\}{young,pre−pre,pre},对应下标1,2,31,2,31,2,3
D1={1,2,3}p1=13, p2=13, p3=13Ent(D1)=−(13log213+13log213+13log213)=1.585D2={4,5,6,7,8}p1=15, p2=15, p3=35Ent(D2)=−(15log215+15log215+35log235)=1.371D3={9,10,11,12}p1=0, p2=14, p3=34Ent(D3)=−(14log214+34log234)=0.811Gain(D,AGE)=Ent(D)−∑v=13∣Dv∣∣D∣Ent(Dv)=1.384−312×1.585−512×1.371−412×0.811=0.146 \begin{aligned} &D^1=\{1,2,3\} \quad p_1=\frac{1}{3},\ p_2=\frac{1}{3},\ p_3=\frac{1}{3} \quad Ent(D^1)=-(\frac{1}{3}\log_2{\frac{1}{3}}+\frac{1}{3}\log_2{\frac{1}{3}}+\frac{1}{3}\log_2{\frac{1}{3}})=1.585 \\ &D^2=\{4,5,6,7,8\} \quad p_1=\frac{1}{5},\ p_2=\frac{1}{5},\ p_3=\frac{3}{5} \quad Ent(D^2)=-(\frac{1}{5}\log_2{\frac{1}{5}}+\frac{1}{5}\log_2{\frac{1}{5}}+\frac{3}{5}\log_2{\frac{3}{5}})=1.371 \\ &D^3=\{9,10,11,12\} \quad p_1=0,\ p_2=\frac{1}{4},\ p_3=\frac{3}{4} \quad Ent(D^3)=-(\frac{1}{4}\log_2{\frac{1}{4}}+\frac{3}{4}\log_2{\frac{3}{4}})=0.811 \\ &Gain(D,AGE)=Ent(D)-\sum_{v=1}^3 \frac{|D^v|}{|D|}Ent(D^v)=1.384-\frac{3}{12}\times 1.585-\frac{5}{12}\times 1.371-\frac{4}{12}\times 0.811=0.146 \end{aligned} D1={1,2,3}p1=31, p2=31, p3=31Ent(D1)=−(31log231+31log231+31log231)=1.585D2={4,5,6,7,8}p1=51, p2=51, p3=53Ent(D2)=−(51log251+51log251+53log253)=1.371D3={9,10,11,12}p1=0, p2=41, p3=43Ent(D3)=−(41log241+43log243)=0.811Gain(D,AGE)=Ent(D)−v=1∑3∣D∣∣Dv∣Ent(Dv)=1.384−123×1.585−125×1.371−124×0.811=0.146 -
ASTASTAST
有两个可能取值{yes,no}\{yes,no\}{yes,no},对应下标1,21,21,2
D1={2,3,6,7,8,11,12}p1=0, p2=37, p3=47Ent(D1)=−(37log237+47log247)=0.985D2={1,4,5,9,10}p1=25, p2=0, p3=35Ent(D2)=−(25log225+35log235)=0.971Gain(D,AST)=Ent(D)−∑v=12∣Dv∣∣D∣Ent(Dv)=1.384−712×0.985−512×0.971=0.405 \begin{aligned} &D^1=\{2,3,6,7,8,11,12\} \quad p_1=0,\ p_2=\frac{3}{7},\ p_3=\frac{4}{7} \quad Ent(D^1)=-(\frac{3}{7}\log_2{\frac{3}{7}}+\frac{4}{7}\log_2{\frac{4}{7}})=0.985 \\ &D^2=\{1,4,5,9,10\} \quad p_1=\frac{2}{5},\ p_2=0,\ p_3=\frac{3}{5} \quad Ent(D^2)=-(\frac{2}{5}\log_2{\frac{2}{5}}+\frac{3}{5}\log_2{\frac{3}{5}})=0.971 \\ &Gain(D,AST)=Ent(D)-\sum_{v=1}^2 \frac{|D^v|}{|D|}Ent(D^v)=1.384-\frac{7}{12}\times 0.985-\frac{5}{12}\times 0.971=0.405 \end{aligned} D1={2,3,6,7,8,11,12}p1=0, p2=73, p3=74Ent(D1)=−(73log273+74log274)=0.985D2={1,4,5,9,10}p1=52, p2=0, p3=53Ent(D2)=−(52log252+53log253)=0.971Gain(D,AST)=Ent(D)−v=1∑2∣D∣∣Dv∣Ent(Dv)=1.384−127×0.985−125×0.971=0.405 -
TEATEATEA
有两个可能的取值{normal,reduced}\{normal,reduced\}{normal,reduced},对应下标1,21,21,2
D1={1,3,5,6,7,8,10,12}p1=28, p2=38, p3=38Ent(D1)=−(28log228+38log238+38log238)=1.561D2={2,4,9,11}p1=0, p2=0, p3=1Ent(D2)=−(1log21)=0Gain(D,TEA)=Ent(D)−∑v=12∣Dv∣∣D∣Ent(Dv)=1.384−812×1.561−512×0=0.343 \begin{aligned} &D^1=\{1,3,5,6,7,8,10,12\} \quad p_1=\frac{2}{8},\ p_2=\frac{3}{8},\ p_3=\frac{3}{8} \quad Ent(D^1)=-(\frac{2}{8}\log_2{\frac{2}{8}}+\frac{3}{8}\log_2{\frac{3}{8}}+\frac{3}{8}\log_2{\frac{3}{8}})=1.561 \\ &D^2=\{2,4,9,11\} \quad p_1=0,\ p_2=0,\ p_3=1 \quad Ent(D^2)=-(1\log_2{1})=0 \\ &Gain(D,TEA)=Ent(D)-\sum_{v=1}^2 \frac{|D^v|}{|D|}Ent(D^v)=1.384-\frac{8}{12}\times 1.561-\frac{5}{12}\times 0=0.343 \end{aligned} D1={1,3,5,6,7,8,10,12}p1=82, p2=83, p3=83Ent(D1)=−(82log282+83log283+83log283)=1.561D2={2,4,9,11}p1=0, p2=0, p3=1Ent(D2)=−(1log21)=0Gain(D,TEA)=Ent(D)−v=1∑2∣D∣∣Dv∣Ent(Dv)=1.384−128×1.561−125×0=0.343
于是,Gain(D,AST)Gain(D,AST)Gain(D,AST)最大,选它为划分属性,

对左分支节点划分,可用属性集A={AGE,TEA}A=\{AGE,TEA\}A={AGE,TEA},类别为CONCONCON。该节点的信息熵Ent(D1)=0.985Ent(D^1)=0.985Ent(D1)=0.985。计算每个属性的信息熵和信息增益,记p(soft)=p1,p(hard)=p2,p(none)=p3p(soft)=p_1,p(hard)=p_2,p(none)=p_3p(soft)=p1,p(hard)=p2,p(none)=p3,
-
AGEAGEAGE
有三个可能取值{young,pre−pre,pre}\{young,pre-pre,pre\}{young,pre−pre,pre},对应下标1,2,31,2,31,2,3
D11={2,3}p1=0, p2=12, p3=12Ent(D11)=−(12log212+12log212)=1.000D12={6,7,8}p1=0, p2=13, p3=23Ent(D12)=−(13log213+23log223)=0.918D13={11,12}p1=0, p2=12, p3=12Ent(D13)=−(12log212+12log212)=1.000Gain(D1,AGE)=Ent(D)−∑v=13∣D1v∣∣D1∣Ent(D1v)=0.985−27×1.000−37×0.918−27×1.000=0.020 \begin{aligned} &D^{11}=\{2,3\} \quad p_1=0,\ p_2=\frac{1}{2},\ p_3=\frac{1}{2} \quad Ent(D^{11})=-(\frac{1}{2}\log_2{\frac{1}{2}}+\frac{1}{2}\log_2{\frac{1}{2}})=1.000 \\ &D^{12}=\{6,7,8\} \quad p_1=0,\ p_2=\frac{1}{3},\ p_3=\frac{2}{3} \quad Ent(D^{12})=-(\frac{1}{3}\log_2{\frac{1}{3}}+\frac{2}{3}\log_2{\frac{2}{3}})=0.918 \\ &D^{13}=\{11,12\} \quad p_1=0,\ p_2=\frac{1}{2},\ p_3=\frac{1}{2} \quad Ent(D^{13})=-(\frac{1}{2}\log_2{\frac{1}{2}}+\frac{1}{2}\log_2{\frac{1}{2}})=1.000 \\ &Gain(D^1,AGE)=Ent(D)-\sum_{v=1}^3 \frac{|D^{1v}|}{|D^1|}Ent(D^{1v})=0.985-\frac{2}{7}\times 1.000-\frac{3}{7}\times 0.918-\frac{2}{7}\times 1.000=0.020 \end{aligned} D11={2,3}p1=0, p2=21, p3=21Ent(D11)=−(21log221+21log221)=1.000D12={6,7,8}p1=0, p2=31, p3=32Ent(D12)=−(31log231+32log232)=0.918D13={11,12}p1=0, p2=21, p3=21Ent(D13)=−(21log221+21log221)=1.000Gain(D1,AGE)=Ent(D)−v=1∑3∣D1∣∣D1v∣Ent(D1v)=0.985−72×1.000−73×0.918−72×1.000=0.020 -
TEATEATEA
有两个可能的取值{normal,reduced}\{normal,reduced\}{normal,reduced},对应下标1,21,21,2
D11={3,6,7,8,12}p1=0, p2=35, p3=25Ent(D1)=−(35log235+25log225)=0.971D12={2,11}p1=0, p2=0, p3=1Ent(D2)=−(1log21)=0Gain(D1,TEA)=Ent(D1)−∑v=12∣D1v∣∣D1∣Ent(D1v)=0.985−57×0.971−27×0=0.291 \begin{aligned} &D^{11}=\{3,6,7,8,12\} \quad p_1=0,\ p_2=\frac{3}{5},\ p_3=\frac{2}{5} \quad Ent(D^1)=-(\frac{3}{5}\log_2{\frac{3}{5}}+\frac{2}{5}\log_2{\frac{2}{5}})=0.971 \\ &D^{12}=\{2,11\} \quad p_1=0,\ p_2=0,\ p_3=1 \quad Ent(D^2)=-(1\log_2{1})=0 \\ &Gain(D^1,TEA)=Ent(D^1)-\sum_{v=1}^2 \frac{|D^{1v}|}{|D^1|}Ent(D^{1v})=0.985-\frac{5}{7}\times 0.971-\frac{2}{7}\times 0=0.291 \end{aligned} D11={3,6,7,8,12}p1=0, p2=53, p3=52Ent(D1)=−(53log253+52log252)=0.971D12={2,11}p1=0, p2=0, p3=1Ent(D2)=−(1log21)=0Gain(D1,TEA)=Ent(D1)−v=1∑2∣D1∣∣D1v∣Ent(D1v)=0.985−75×0.971−72×0=0.291
于是,Gain(D1,TEA)Gain(D^1,TEA)Gain(D1,TEA)最大,选它为划分属性,

继续对左分支节点划分,可用属性集A={AGE}A=\{AGE\}A={AGE},类别为CONCONCON。选它为划分属性,得到D111,D112,D113D^{111},D^{112},D^{113}D111,D112,D113,此时属性集合为空,将这三个节点设为叶子节点,其中D112D^{112}D112中p2=13,p3=23p_2=\frac{1}{3},p_3=\frac{2}{3}p2=31,p3=32,因此将D112D^{112}D112对应叶子节点标注为nonenonenone类别,其余两个节点中只有一个样本,将叶子节点标记为对应样本类别,返回。考察D12D^{12}D12,包含样本均属同一类别nonenonenone,则将D12D^{12}D12标记为nonenonenone。

回到一层,对一层右分支节点划分,可用属性集A={AGE,TEA}A=\{AGE,TEA\}A={AGE,TEA},类别为CONCONCON。该节点的信息熵Ent(D1)=0.971Ent(D^1)=0.971Ent(D1)=0.971。计算每个属性的信息熵和信息增益,记p(soft)=p1,p(hard)=p2,p(none)=p3p(soft)=p_1,p(hard)=p_2,p(none)=p_3p(soft)=p1,p(hard)=p2,p(none)=p3,
-
AGEAGEAGE
有三个可能取值{young,pre−pre,pre}\{young,pre-pre,pre\}{young,pre−pre,pre},对应下标1,2,31,2,31,2,3
D21={1}p1=1, p2=0, p3=0Ent(D11)=−(1log21)=0.000D22={4,5}p1=0, p2=12, p3=12Ent(D12)=−(12log212+12log212)=1.000D23={9,10}p1=0, p2=0, p3=1Ent(D13)=−(1log21)=0.000Gain(D2,AGE)=Ent(D2)−∑v=13∣D2v∣∣D2∣Ent(D2v)=0.971−15×0.000−25×1.000−25×0.000=0.571 \begin{aligned} &D^{21}=\{1\} \quad p_1=1,\ p_2=0,\ p_3=0 \quad Ent(D^{11})=-(1\log_2 1)=0.000 \\ &D^{22}=\{4,5\} \quad p_1=0,\ p_2=\frac{1}{2},\ p_3=\frac{1}{2} \quad Ent(D^{12})=-(\frac{1}{2}\log_2{\frac{1}{2}}+\frac{1}{2}\log_2{\frac{1}{2}})=1.000 \\ &D^{23}=\{9,10\} \quad p_1=0,\ p_2=0,\ p_3=1 \quad Ent(D^{13})=-(1\log_2{1})=0.000 \\ &Gain(D^2,AGE)=Ent(D^2)-\sum_{v=1}^3 \frac{|D^{2v}|}{|D^2|}Ent(D^{2v})=0.971-\frac{1}{5}\times 0.000-\frac{2}{5}\times 1.000-\frac{2}{5}\times 0.000=0.571 \end{aligned} D21={1}p1=1, p2=0, p3=0Ent(D11)=−(1log21)=0.000D22={4,5}p1=0, p2=21, p3=21Ent(D12)=−(21log221+21log221)=1.000D23={9,10}p1=0, p2=0, p3=1Ent(D13)=−(1log21)=0.000Gain(D2,AGE)=Ent(D2)−v=1∑3∣D2∣∣D2v∣Ent(D2v)=0.971−51×0.000−52×1.000−52×0.000=0.571 -
TEATEATEA
有两个可能的取值{normal,reduced}\{normal,reduced\}{normal,reduced},对应下标1,21,21,2
D21={1,5,10}p1=23, p2=0, p3=13Ent(D1)=−(23log223+13log213)=0.918D22={4,9}p1=0, p2=0, p3=1Ent(D2)=−(1log21)=0Gain(D2,TEA)=Ent(D2)−∑v=12∣D2v∣∣D2∣Ent(D2v)=0.971−35×0.918=0.420 \begin{aligned} &D^{21}=\{1,5,10\} \quad p_1=\frac{2}{3},\ p_2=0,\ p_3=\frac{1}{3} \quad Ent(D^1)=-(\frac{2}{3}\log_2{\frac{2}{3}}+\frac{1}{3}\log_2{\frac{1}{3}})=0.918 \\ &D^{22}=\{4,9\} \quad p_1=0,\ p_2=0,\ p_3=1 \quad Ent(D^2)=-(1\log_2{1})=0 \\ &Gain(D^2,TEA)=Ent(D^2)-\sum_{v=1}^2 \frac{|D^{2v}|}{|D^2|}Ent(D^{2v})=0.971-\frac{3}{5}\times 0.918=0.420 \end{aligned} D21={1,5,10}p1=32, p2=0, p3=31Ent(D1)=−(32log232+31log231)=0.918D22={4,9}p1=0, p2=0, p3=1Ent(D2)=−(1log21)=0Gain(D2,TEA)=Ent(D2)−v=1∑2∣D2∣∣D2v∣Ent(D2v)=0.971−53×0.918=0.420
于是,Gain(D2,AGE)Gain(D^2,AGE)Gain(D2,AGE)最大,选它为划分属性,

考察D21D^{21}D21,由于只有一个样本,所以直接将D21D^{21}D21设置为叶子节点,标记为softsoftsoft,返回到D22D^{22}D22.此时可用的属性集A={TEA}A=\{TEA\}A={TEA},选它为划分属性,此时属性集为空,将这两个节点设置为叶子节点,这两个叶子节点中都只有一个样本,于是标记为对应样本类别,返回。考察D23D^{23}D23,其中样本全部属于类别nonenonenone,所以直接将D23D^{23}D23设置为叶子节点,标记为nonenonenone。最终得到决策树

更多推荐


所有评论(0)