统计学1:基本知识——均值、方差、标准差
-总体(Population)抽样(Sample)均值(mean)μ=∑i=1NxiN\mu = \frac{\sum_{i=1}^{N}{x_i}}{N}μ=N∑i=1Nxix‾=∑i=1nxin\overline{x}=\frac{\sum_{i=1}^{n}{x_i}}{n}x=n∑i=1nxi方差(variance)σ2=∑i=1N(xi−μ)...
·
| - | 总体(Population) | 抽样(Sample) |
|---|---|---|
| 均值(mean) | μ=∑i=1NxiN\mu = \frac{\sum_{i=1}^{N}{x_i}}{N}μ=N∑i=1Nxi | x‾=∑i=1nxin\overline{x}=\frac{\sum_{i=1}^{n}{x_i}}{n}x=n∑i=1nxi |
| 方差(variance) | σ2=∑i=1N(xi−μ)2N=∑i=1Nxi2N−μ2\sigma^{2} = \frac{\sum_{i=1}^{N}({x_i-\mu})^2}{N}=\frac{\sum_{i=1}^{N}{x_{i}^{2}}}{N}-\mu^2σ2=N∑i=1N(xi−μ)2=N∑i=1Nxi2−μ2 | Sn2=∑i=1n(xi−x‾)2nS_{n}^{2} = \frac{\sum_{i=1}^{n}({x_i-\overline{x}})^2}{n}Sn2=n∑i=1n(xi−x)2 Unbaised Sample Variance:Sn2=∑i=1n(xi−x‾)2n−1Unbaised\ Sample\ Variance: S_{n}^{2} = \frac{\sum_{i=1}^{n}({x_i-\overline{x}})^2}{n-1} Unbaised Sample Variance:Sn2=n−1∑i=1n(xi−x)2 |
| 标准差 (standard deviation) | σ=σ2=∑i=1N(xi−μ)2N\sigma=\sqrt{\sigma^2}=\sqrt{\frac{\sum_{i=1}^{N}({x_i-\mu})^2}{N}}σ=σ2=N∑i=1N(xi−μ)2 | S=S2=∑i=1n(xi−x‾)2n−1S=\sqrt{S^2}=\sqrt{\frac{\sum_{i=1}^{n}({x_i-\overline{x}})^2}{n-1}}S=S2=n−1∑i=1n(xi−x)2 |
- 均值和方差的运算

Var(X)=E(X2)−E(X)2Var(X)=E(X^2)-E(X)^2Var(X)=E(X2)−E(X)2
无偏样本方差(Unbaised Sample Variance)
用样本估计总体方差通常会导致数值偏低,无偏样本方差中分母减小使样本方差的值变大
标准差
方差的单位比原始数据多了一个平方,通过开方使这个衡量离散程度的数值与原始数据统一量纲,所以标准差的使用更为广泛。
更多推荐
所有评论(0)