凸优化—凸松弛(Convex Relaxation)
字体希腊字母a. 小写 (Lower Case)语法效果语法效果语法效果语法效果\alphaα\alphaα\betaβ\betaβ\gammaγ\gammaγ\deltaδ\deltaδ\epsilonϵ\epsilonϵ\zetaζ\zetaζ\etaη\etaη\thetaθ\thetaθ\lambdaλ\lambdaλ\muμ\muμ\nuν\nuν\xiξ\xiξ\piπ\piπ\rho
Directory
目标(Objective)
Our objective is to transform non-convex functions to a convex functions, i.e.,
min f 0 ( x ) → C o n v e x f u n c t i o n s . t . f i ( x ) ≤ 0 , i = 1 , . . . , m → C o n v e x f u n c t i o n s s . t . a i T x = b i , ( h i ( x ) = 0 ) i = 1 , . . . , p → A f f i n e f u n c t i o n s \begin{array}{lll} & \min ~ f_0(x) \rightarrow \mathrm{Convex ~ function} \\ & s.t. ~~ f_i(x) \le 0, i=1,...,m \rightarrow \mathrm{Convex ~ functions}\\ & s.t. ~~ a_i^\mathrm{T} x = b_i, ( h_i(x) = 0) ~ i=1,...,p \rightarrow \mathrm{Affine ~ functions} \end{array} min f0(x)→Convex functions.t. fi(x)≤0,i=1,...,m→Convex functionss.t. aiTx=bi,(hi(x)=0) i=1,...,p→Affine functions
等价变换(Equivalent Transformation for Conditions)
min f 0 ( x ) = x 1 2 + x 2 2 s . t . f 1 ( x ) = x 1 1 + x 2 2 ( n o n − c o n v e x ) h i ( x ) = x 1 2 + x 2 2 = 0 ( n o n − a f f i n e ) \begin{array}{lll} & \min ~ f_0(x) =x_1^2 +x_2^2 \\ & s.t. ~~~ f_1(x) = \frac{x_1}{1+x_2^2} (\mathrm{non-convex}) \\ & \qquad h_i(x) = x_1^2 + x_2^2 = 0 (\mathrm{non-affine}) \end{array} min f0(x)=x12+x22s.t. f1(x)=1+x22x1(non−convex)hi(x)=x12+x22=0(non−affine) The above equation can be rewrriten as
min f 0 ( x ) = x 1 2 + x 2 2 s . t . f 1 ( x ) = x 1 ≤ 0 h i ( x ) = x 1 + x 2 = 0 \begin{array}{lll} & \min ~ f_0(x) =x_1^2 +x_2^2 \\ & s.t. ~~~ f_1(x) = x_1 \le 0 \\ & \qquad h_i(x) = x_1 + x_2 = 0 \end{array} min f0(x)=x12+x22s.t. f1(x)=x1≤0hi(x)=x1+x2=0
降维(Dimension Reduction)
Generally, for reducing the complication of the problem, we need to reduce the dimensionality of functions. But, sometime, dimensionality reduction will lead the probloem to be difficult.
For example, a convex problem can be expressed as
P 0 : min f 0 ( x ) s . t . f i ( x ) ≤ 0 , i = 1 , . . . , m s . t . a i T x = b i , i = 1 , . . . , p \begin{array}{lll} P0: & \min ~ f_0(x) \\ & s.t. ~~ f_i(x) \le 0, i=1,...,m\\ & s.t. ~~ a_i^\mathrm{T} x = b_i, ~ i=1,...,p \end{array} P0:min f0(x)s.t. fi(x)≤0,i=1,...,ms.t. aiTx=bi, i=1,...,p Letting F z = x 0 Fz =x_0 Fz=x0, the above equation can be rewritten as
min f 0 ( F z = x 0 ) s . t . f i ( F z = x 0 ) ≤ 0 , i = 1 , . . . , m \begin{array}{lll} & \min ~ f_0(Fz =x_0)\\ & s.t. ~~ f_i(Fz =x_0) \le 0, i=1,...,m \end{array} min f0(Fz=x0)s.t. fi(Fz=x0)≤0,i=1,...,m
升维(Dimension Raising)
Here, we introduce slack variable s i s_i si to raise the dimensionality of the problem.
Problem P 0 P0 P0 can be rewritten as
min f 0 ( x ) s . t . s i ≤ 0 , i = 1 , . . . , m f i ( x ) − s i = 0 , i = 1 , . . . , m a i T x = b i , i = 1 , . . . , p \begin{array}{lll} & \min ~ f_0(x) \\ & s.t. ~ s_i \le 0, i=1,...,m\\ & \quad ~~f_i(x) -s_i = 0, i=1,...,m\\ & \quad ~~a_i^\mathrm{T} x = b_i, ~ i=1,...,p \end{array} min f0(x)s.t. si≤0,i=1,...,m fi(x)−si=0,i=1,...,m aiTx=bi, i=1,...,p
更多推荐
所有评论(0)