站在现在回头看,会发现一个有趣的现象: AI 大潮滚滚 2 年,流量的风向能变,岗位的 JD 能变,各家模型能天天更新,但真正能落地的东西,并没有变。

这 2 年里,我带过很多转行同学,陪他们一起经历过“雄心壮志 → 迷茫卡壳 → 第一次做出能跑的系统 → 拿到第一份 AI 岗位”的全过程。

有些经验,是踩了坑才能悟到的;

有些教训,是看资料永远不会告诉你的;

还有一些,是我这么久,越看越觉得“必须讲”,否则走弯路的人只会越来越多。

所以今天这篇文章,我就不讲那些 PPT 里的“行业趋势”,也不讲媒体喜欢吹的“模型参数规模”。

我就讲一个问题:

2025 年了,普通人到底怎么转向大模型?

而且我会按照“实战 + 落地 + 不空谈”的方式来讲,这也是我这几年一直坚持的风格。

在这里插入图片描述

一、大模型不是 ChatGPT:别把“入口”和“全景图”搞反了

很多同学第一次接触大模型,是因为 ChatGPT。

但 ChatGPT 只是“楼的最顶层”,你看到的是它的“用户界面”,不是它的“技术栈”。

如果用一句话概括大模型的技术世界,我会这样画:

应用层(App)模型层(Model)训练链路(Pipeline)数据层(Data)部署链路(Inference)运维与平台(MLOps)

你会发现:真正能落地的岗位,全部藏在这 5 层之间。

也正因如此,大模型不是一个岗位,而是一整个产业链。

你以为你在选“方向”,但其实是在选“生态位”。

结合我帮学员投简历、对接公司需求的经验,大模型岗位主要分成 4 大类:

类型 关键词 适合人群
数据方向 数据构建、清洗、评测集 完全小白 / 转行者
平台方向 训练流水线、分布式 后端/大数据/DevOps 出身
应用方向 RAG / Agent / 对话系统 业务理解强的人
部署方向 推理加速、压缩、端侧 系统开发背景

先判断“自己适合哪个方向”,比学 10 个框架更重要。

二、新人最容易掉进的 3 个坑

这部分是我在训练营里反复看到的“真实问题”,不是理论。

❌误区 1:一上来就想“调模型”

这是最常见的,但事实很残酷:

  • 95% 的岗位不是在调模型
  • 95% 的 AI 项目不是从“模型”开始
  • 95% 的新手还没跑通 pipeline 就已经被劝退了

大模型岗位真正做的是什么?

数据链路 + 训练脚本 + 推理服务 + 验证效果

就算你进了大厂,最开始做的也是:

  • 清洗数据
  • 写 ETL
  • 搭训练流程
  • 评估模型表现
  • 修 bug

如果只想“研究论文 + 调参”,那会非常痛苦。

❌ 误区 2:到处收集名词,但没有逻辑体系

LoRA、QLoRA、RAG、SFT、TensorRT、vLLM…

看过一遍,以为都懂了;

真正做项目时:

“我知道这些词,但不知道该怎么组合。”

大模型不是“背单词”,而是“解一道大题”。

你要学的不是名词,而是解决问题的路径—— 比如,一个法律问答助手需要什么?

  • 向量检索
  • 文档清洗
  • Rerank
  • Prompt 架构
  • 推理并发
  • 延迟优化

这才是真正的技能。

❌ 误区 3:工程能力太弱,以为“搞 AI 不用写代码”

我讲句实话:

真正能做好大模型的人,本质是 能写代码的工程师

你要会:

  • 写 Python 脚本处理数据
  • 拉起 GPU 环境
  • 部署推理服务
  • 调HTTP接口
  • 在服务器上看日志定位问题

AI 不是“研究型岗位”,而是“工程型岗位 + 算法思维”的组合。

三、什么方向才适合自己?师兄给你逐个划重点

这是我看过 100+ 转行学员之后,总结出来的“真实建议”,不是网上那种泛化描述。

方向 1:数据方向(转行者的黄金入口)

别觉得这是“苦活累活”,我很坦诚地讲:

做数据,是当下最容易入门、最稳定、最现实的方向。

包括:

  • 清洗训练数据
  • 构建 prompt-response 数据集
  • 做知识构建(Knowledge Build)
  • 做评测集(Eval)
  • 做 RAG 的数据加工

在很多公司,数据工程师直接决定模型效果。

适合:

  • 完全小白
  • 没写过太多代码,但逻辑好
  • 想先过渡到 AI 领域的人

这是我最推荐新手的方向。

方向 2:平台方向(程序员转行最优路径)

平台岗是工程味最重的方向:

  • 训练 pipeline
  • 数据加载
  • 分布式训练
  • GPU 资源调度

如果你之前做过:

  • 后端
  • 大数据
  • DevOps
  • K8s

那么你几乎是“天然适配”。

适合想进大厂、想靠“工程能力”吃饭的人。

方向 3:应用方向(最卷但最酷)

这是大家最想做的方向:

  • 智能助手
  • AIGC
  • 对话系统
  • RAG
  • Agent

它很卷,但也很能体现“个人技术视野”。

适合:

  • 业务理解强
  • 能快速做 Demo
  • 能和业务沟通
  • 想“做出有用户的产品”的人

方向 4:部署方向(高门槛但极缺人)

推理加速、模型压缩、量化、端侧适配…

这是“深度工程 + 数学 + GPU”的岗位,也是最难转行的方向。

但如果你能上手,就属于稀缺人才。

四、真正的学习路线(不是那种“看完 100 篇文章”式的)

我来给你一条最现实的路径。

✅ 第 1 阶段(0–30 天):认知构建

你要搞懂:

  • 大模型全景图
  • RAG 架构
  • LoRA / SFT 的区别
  • 推理的成本和瓶颈
  • 训练链路是怎么跑的

这阶段的目标只有一个:

不要盲学,先看全局图。

✅ 第 2 阶段(1–3 个月):实战落地

随便原地造一个 demo:

  • 一个知识问答系统
  • 一个对话机器人
  • 一个小型训练 pipeline
  • 一个本地推理的模型服务

跑通一次,你的认知会直接升级。

这是所有吴师兄学员的分水岭。

✅ 第 3 阶段(3–6 个月):项目打磨 + 简历优化

你要做的是:

  • 找一个行业场景
  • 搭一个完整解决方案
  • 写一份能“讲出来”的项目经历
  • 完善简历 + 投简历

真正的竞争力来自“做过项目”。

最后唠两句

为什么AI大模型成为越来越多程序员转行就业、升职加薪的首选

很简单,这些岗位缺人且高薪

智联招聘的最新数据给出了最直观的印证:2025年2月,AI领域求职人数同比增幅突破200% ,远超其他行业平均水平;整个人工智能行业的求职增速达到33.4%,位居各行业榜首,其中人工智能工程师岗位的求职热度更是飙升69.6%。

在这里插入图片描述

AI产业的快速扩张,也让人才供需矛盾愈发突出。麦肯锡报告明确预测,到2030年中国AI专业人才需求将达600万人,人才缺口可能高达400万人,这一缺口不仅存在于核心技术领域,更蔓延至产业应用的各个环节。

那0基础普通人如何学习大模型 ?

深耕科技一线十二载,亲历技术浪潮变迁。我见证那些率先拥抱AI的同行,如何建立起效率与薪资的代际优势。如今,我将积累的大模型面试真题、独家资料、技术报告与实战路线系统整理,分享于此,为你扫清学习困惑,共赴AI时代新程。

我整理出这套 AI 大模型突围资料包【允许白嫖】:

  • ✅从入门到精通的全套视频教程

  • ✅AI大模型学习路线图(0基础到项目实战仅需90天)

  • ✅大模型书籍与技术文档PDF

  • ✅各大厂大模型面试题目详解

  • ✅640套AI大模型报告合集

  • ✅大模型入门实战训练

这份完整版的大模型 AI 学习和面试资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

在这里插入图片描述

①从入门到精通的全套视频教程

包含提示词工程、RAG、Agent等技术点

在这里插入图片描述

② AI大模型学习路线图(0基础到项目实战仅需90天)

全过程AI大模型学习路线

在这里插入图片描述

③学习电子书籍和技术文档

市面上的大模型书籍确实太多了,这些是我精选出来的

在这里插入图片描述

④各大厂大模型面试题目详解

在这里插入图片描述

⑤640套AI大模型报告合集

在这里插入图片描述

⑥大模型入门实战训练

在这里插入图片描述

如果说你是以下人群中的其中一类,都可以来智泊AI学习人工智能,找到高薪工作,一次小小的“投资”换来的是终身受益!

应届毕业生‌:无工作经验但想要系统学习AI大模型技术,期待通过实战项目掌握核心技术。

零基础转型‌:非技术背景但关注AI应用场景,计划通过低代码工具实现“AI+行业”跨界‌。

业务赋能 ‌突破瓶颈:传统开发者(Java/前端等)学习Transformer架构与LangChain框架,向AI全栈工程师转型‌。

👉获取方式:
有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

Logo

有“AI”的1024 = 2048,欢迎大家加入2048 AI社区

更多推荐