目前国内还是很缺AI人才的,希望更多人能真正加入到AI行业,共同促进行业进步,增强我国的AI竞争力。想要系统学习AI知识的朋友可以看看我精心打磨的教程 http://blog.csdn.net/jiangjunshow,教程通俗易懂,高中生都能看懂,还有各种段子风趣幽默,从深度学习基础原理到各领域实战应用都有讲解,我22年的AI积累全在里面了。注意,教程仅限真正想入门AI的朋友,否则看看零散的博文就够了。

前言

大家好,今天咱们用最接地气、零门槛的方式,把RAG扒得明明白白。不管你是刚接触AI的大学生,还是想快速落地项目的初级程序员,看完这篇,你能直接懂原理、能上手、能避坑,再也不用被各种玄学概念绕晕。

先问个扎心的问题:你用大模型的时候,有没有遇到过这种情况?
问它2026年最新的政策、刚发布的产品参数、你们公司内部的规章制度,它要么答非所问,要么一本正经地胡说八道——这就是大模型的幻觉知识滞后

大模型就像一个读了很多旧书的学霸,记忆力强、表达好,但它没看过你手里的新资料、内部文档,更不知道你行业的最新动态。硬让它答,它只能靠“编”。

那怎么解决?答案就是今天的主角:RAG(检索增强生成)

用大白话翻译:给大模型配一个“随身资料库”,先查资料再说话,不瞎编、不超时、更准确

再给个生活化类比:
大模型=闭卷考试的学生,只能靠脑子里的旧知识答题;
RAG=开卷考试,允许你先翻课本、查笔记,再整理答案。

是不是瞬间就懂了?

一、RAG到底是什么?官方定义+人话版

先给权威定义(来自IBM Developer 2026年1月最新文档):
RAG(Retrieval-Augmented Generation,检索增强生成)是一种从外部知识库检索事实,将大模型锚定在最准确、最新信息上,提升生成质量的AI框架。

人话版总结:

  1. 不改动大模型本身,不用重新训练
  2. 外接一个私有/实时更新的知识库
  3. 用户提问→先去库里找相关内容→把资料+问题一起给大模型→大模型基于资料生成答案
  4. 答案有依据、不幻觉、知识实时更新

核心价值三句话:

  • 治幻觉:答案有来源,不瞎编
  • 补时效:知识库更新,AI就懂新知识
  • 保安全:敏感数据存在自己库里,不传给大模型

二、RAG的完整流程:四步走,一步都不能少

RAG不是黑箱,它的流程非常清晰,2025-2026主流标准流程分四步:加载→切片→向量化→检索生成。

第一步:文档加载(把资料喂进去)

把你的PDF、Word、Excel、网页、数据库里的文本,提取成纯文本。
就像把课本、笔记、试卷,都整理成可阅读的文字。

第二步:文本分块(切片)

大模型一次读不完长篇大论,所以要切成小段(Chunk)。
2026主流做法:按段落/语义切,长度512/1024字符,避免切断完整语义。
切得好不好,直接影响检索精度——切太碎找不到,切太长塞不进上下文。

第三步:向量化(把文字变成数字向量)

这一步很多人怕数学,其实不用你算,模型帮你搞定。
向量=文字的“数字身份证”,意思相近的文字,向量距离更近。
嵌入模型(Embedding Model) 把每块文本转成向量,存进向量数据库(Vector DB)

常见向量库(2026稳定版):

  • 轻量:FAISS、Chroma
  • 企业级:Milvus、Pinecone、Qdrant

第四步:检索+生成(开卷答题)

  1. 用户提问→转成向量
  2. 向量库找最相似的N块内容(默认k=3-5)
  3. 把“问题+检索到的资料”拼好,传给大模型
  4. 大模型基于资料整理答案,不脱离原文

整个流程,没有魔法,全是可复现的工程步骤。

三、为什么2026年必须学RAG?

现在AI行业有个共识:大模型应用落地,80%都要用RAG

原因很真实:

  1. 微调太贵:全量微调要显卡、要数据、要时间,小团队/个人玩不起
  2. RAG便宜:几行代码,更新知识库就更新能力,零训练成本
  3. 合规安全:企业数据不泄露,满足隐私要求
  4. 就业刚需:简历写“RAG落地经验”,直接拉开差距

四、零基础上手:真实可运行的极简RAG代码

下面给你2026年最稳、最通用的极简实现,基于LangChain+Chroma+通用嵌入模型,复制就能跑。

环境安装(官方稳定版):

pip install langchain==0.2.0 langchain-community==0.2.0 chromadb==0.5.0 sentence-transformers==2.6.0

极简代码(注释超详细):

# 1. 导入依赖
from langchain.document_loaders import TextLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import Chroma
from langchain.llms import Ollama

# 2. 加载文档(换成你的txt路径)
loader = TextLoader("my_knowledge.txt", encoding="utf-8")
documents = loader.load()

# 3. 文本分块
text_splitter = RecursiveCharacterTextSplitter(
    chunk_size=512,
    chunk_overlap=64
)
splits = text_splitter.split_documents(documents)

# 4. 向量库存储
embeddings = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
vectordb = Chroma.from_documents(documents=splits, embedding=embeddings)
retriever = vectordb.as_retriever(search_kwargs={"k": 3})

# 5. 本地大模型(Ollama一键启动)
llm = Ollama(model="qwen:7b")

# 6. 组装RAG并提问
def rag_ask(question):
    docs = retriever.get_relevant_documents(question)
    context = "\n".join([doc.page_content for doc in docs])
    prompt = f"根据资料回答:{context}\n问题:{question}"
    return llm.invoke(prompt)

# 测试
print(rag_ask("你的问题"))

这段代码来自LangChain官方示例+社区最佳实践,2026年兼容稳定,零坑。

五、新手最容易踩的5个坑,看完少走3个月弯路

坑1:切片乱切,语义断裂

不要按固定字数硬切,要用语义分块,保留完整句子/段落。

坑2:k值乱设,找不准资料

新手默认k=3,最多k=5;k太大引入噪音,答案反而不准。

坑3:嵌入模型随便选

通用场景用all-MiniLM-L6-v2;垂直领域(医疗/法律)用行业专用嵌入模型。

坑4:不做重排序(Rerank)

基础RAG只做向量检索,2026进阶必加重排模型,把最相关的排前面,精度提升明显。

坑5:prompt太随意

必须明确告诉大模型:只根据资料回答,不知道就说不知道,不许编

六、RAG的进化:从基础到2026主流方案

1. 基础RAG(Naive RAG)

加载→切片→向量检索→生成,适合入门、小场景。

2. 高级RAG(Advanced RAG)

加预处理、优化切片、检索过滤、重排序、上下文窗口管理,企业主流。

3. GraphRAG(2026热门)

结合知识图谱,处理多跳推理、复杂关联问题,适合金融、法律、科研。

4. Agentic RAG

让RAG和智能体结合,自动判断要不要检索、查哪些库,更智能。

七、RAG能做什么?落地场景直接抄作业

  • 企业智能客服:对接产品手册、售后政策,零错误回答
  • 法律助手:查最新法条、案例,提供依据
  • 医疗辅助:基于指南/文献给出参考
  • 个人知识库:读你的笔记、论文、邮件,帮你总结答疑
  • 教育辅导:围绕教材精准答疑,不超纲
  • 新闻/行情助手:实时检索最新信息,生成摘要

只要是需要准确、实时、私有知识的场景,RAG都能打。

八、学习路径:从小白到落地,按这个来

  1. 理解流程:把本文四步流程背下来
  2. 跑通Demo:运行上面的极简代码
  3. 调优参数:切片、k值、prompt、重排
  4. 工程化:FastAPI封装、部署、高并发
  5. 进阶:GraphRAG、多模态RAG(图文)

不用怕数学,不用啃论文,先跑起来,再慢慢深入。

九、总结

RAG不是玄学,就是大模型的开卷考试工具
它解决了大模型三大痛点:幻觉、知识滞后、数据不安全。
2026年,RAG是AI应用开发者的必备技能,门槛低、见效快、需求大。

不管你是学生找项目,还是初级程序员转AI,把RAG学透,就是最稳的突破口。


目前国内还是很缺AI人才的,希望更多人能真正加入到AI行业,共同促进行业进步,增强我国的AI竞争力。想要系统学习AI知识的朋友可以看看我精心打磨的教程 http://blog.csdn.net/jiangjunshow,教程通俗易懂,高中生都能看懂,还有各种段子风趣幽默,从深度学习基础原理到各领域实战应用都有讲解,我22年的AI积累全在里面了。注意,教程仅限真正想入门AI的朋友,否则看看零散的博文就够了。
在这里插入图片描述

在这里插入图片描述

Logo

有“AI”的1024 = 2048,欢迎大家加入2048 AI社区

更多推荐