【高性能计算】CANN并行张量计算新范式:pypto编程框架深度解析
**pypto**(PyPTO,发音: pai p-t-o)是CANN推出的Parallel Tensor/Tile Operation(并行张量/分块操作)编程范式。作为一种创新的编程模型,pypto旨在简化NPU上的高性能并行计算开发,为开发者提供一种更直观、更高效的张量计算编程方式。
·
1.【高性能计算】CANN并行张量计算新范式:pypto编程框架深度解析
一、项目简介
pypto(PyPTO,发音: pai p-t-o)是CANN推出的Parallel Tensor/Tile Operation(并行张量/分块操作)编程范式。作为一种创新的编程模型,pypto旨在简化NPU上的高性能并行计算开发,为开发者提供一种更直观、更高效的张量计算编程方式。
随着深度学习模型规模的不断增长,传统的逐元素计算方式已经无法满足性能需求。pypto通过引入分块(Tile)操作和并行计算的概念,让开发者能够以更自然的方式表达张量计算,同时充分发挥NPU硬件的并行计算能力。这种编程范式特别适合于矩阵运算、卷积操作等需要大量并行计算的场景。
相关链接:
- CANN组织链接:https://atomgit.com/cann
- pypto仓库链接:https://atomgit.com/cann/pypto
二、核心功能与特性
2.1 PyPTO编程范式特点
| 特性 | 描述 | 优势 |
|---|---|---|
| 分块操作 | 将大张量自动分块处理 | 适应有限的Local Memory |
| 并行计算 | 多核并行执行分块任务 | 充分利用AI Core资源 |
| 抽象层次高 | 隐藏底层硬件细节 | 降低编程复杂度 |
| 类型推导 | 自动推导张量形状和类型 | 减少样板代码 |
| 性能优化 | 内置性能优化策略 | 开箱即用的高性能 |
2.2 核心概念
- Tile(分块):将大张量切分为适合Local Memory的小块
- Parallel(并行):在多个AI Core上并行执行计算
- Operation(操作):定义在Tile上的计算操作
- Reduction(归约):跨Tile的数据聚合操作
三、环境准备
3.1 系统要求
- 操作系统:Ubuntu 20.04/22.04
- 处理器:Atlas 300T/800T系列
- CANN版本:CANN 8.0.RC3及以上
- Python版本:3.8-3.10
- 编译器:GCC 9.0+ / Clang 12.0+
3.2 安装步骤
# 克隆pypto仓库
git clone https://atomgit.com/cann/pypto.git
cd pypto
# 安装Python依赖
pip install -r requirements.txt
# 编译安装
mkdir build && cd build
cmake .. \
-DCMAKE_BUILD_TYPE=Release \
-DCANN_INSTALL_PATH=/usr/local/Ascend \
-DBUILD_PYTHON_BINDINGS=ON
make -j$(nproc)
make install
# 验证安装
python3 -c "import pypto; print('pypto installed successfully')"
四、基础编程示例
4.1 简单的矩阵加法
import pypto as pt
import numpy as np
# 定义张量形状
M, N = 1024, 1024
# 创建输入张量
a = pt.Tensor((M, N), dtype=pt.float32)
b = pt.Tensor((M, N), dtype=pt.float32)
c = pt.Tensor((M, N), dtype=pt.float32)
# 填充数据
a_data = np.random.rand(M, N).astype(np.float32)
b_data = np.random.rand(M, N).astype(np.float32)
a.from_numpy(a_data)
b.from_numpy(b_data)
# 定义分块大小
tile_size = (64, 64)
# 使用pypto进行并行加法
@pt.pto_kernel
def matrix_add(a: pt.Tile, b: pt.Tile, c: pt.Tile):
"""
矩阵加法核函数
Args:
a: 输入Tile A
b: 输入Tile B
c: 输出Tile C
"""
# 遍历Tile中的每个元素
for i in pt.range(a.shape[0]):
for j in pt.range(a.shape[1]):
c[i, j] = a[i, j] + b[i, j]
# 执行并行计算
pt.execute(matrix_add, a, b, c,
tile_size=tile_size,
parallel=True)
# 获取结果
result = c.to_numpy()
print("Addition completed. Result shape:", result.shape)
4.2 矩阵乘法
import pypto as pt
import numpy as np
# 定义矩阵维度
M, K, N = 512, 512, 512
# 创建输入张量
A = pt.Tensor((M, K), dtype=pt.float32)
B = pt.Tensor((K, N), dtype=pt.float32)
C = pt.Tensor((M, N), dtype=pt.float32)
# 填充数据
A_data = np.random.rand(M, K).astype(np.float32)
B_data = np.random.rand(K, N).astype(np.float32)
A.from_numpy(A_data)
B.from_numpy(B_data)
# 定义分块矩阵乘法
@pt.pto_kernel
def matmul_tile(A_tile: pt.Tile, B_tile: pt.Tile,
C_tile: pt.Tile, K_inner: int):
"""
分块矩阵乘法
C_tile = A_tile x B_tile
"""
# 定义累加器
acc = pt.zeros((A_tile.shape[0], B_tile.shape[1]), dtype=pt.float32)
# K维循环
for k in pt.range(K_inner):
# 计算部分积
for i in pt.range(A_tile.shape[0]):
for j in pt.range(B_tile.shape[1]):
acc[i, j] += A_tile[i, k] * B_tile[k, j]
# 写回结果
for i in pt.range(C_tile.shape[0]):
for j in pt.range(C_tile.shape[1]):
C_tile[i, j] = acc[i, j]
# 设置分块参数
tile_m, tile_k, tile_n = 64, 64, 64
K_blocks = (K + tile_k - 1) // tile_k
# 执行分块矩阵乘法
for kb in range(K_blocks):
k_start = kb * tile_k
k_end = min(k_start + tile_k, K)
k_size = k_end - k_start
# 提取K维分块
A_block = A[:, k_start:k_end]
B_block = B[k_start:k_end, :]
# 执行计算
pt.execute(matmul_tile, A_block, B_block, C,
tile_size=(tile_m, tile_n),
kwargs={'K_inner': k_size},
accumulate=(kb > 0)) # 第一次不清零,后续累加
result = C.to_numpy()
# 验证结果
expected = np.dot(A_data, B_data)
print("Matrix multiplication error:", np.max(np.abs(result - expected)))
4.3 卷积操作
import pypto as pt
import numpy as np
# 定义卷积参数
batch_size = 8
in_channels = 64
out_channels = 128
height, width = 32, 32
kernel_size = 3
padding = 1
stride = 1
# 创建输入和权重张量
input_tensor = pt.Tensor((batch_size, in_channels, height, width), dtype=pt.float32)
weight = pt.Tensor((out_channels, in_channels, kernel_size, kernel_size), dtype=pt.float32)
output = pt.Tensor((batch_size, out_channels, height, width), dtype=pt.float32)
# 填充随机数据
input_data = np.random.randn(batch_size, in_channels, height, width).astype(np.float32)
weight_data = np.random.randn(out_channels, in_channels, kernel_size, kernel_size).astype(np.float32) * 0.1
input_tensor.from_numpy(input_data)
weight.from_numpy(weight_data)
# 定义2D卷积核函数
@pt.pto_kernel
def conv2d_tile(input_tile: pt.Tile, weight_tile: pt.Tile,
output_tile: pt.Tile, params: dict):
"""
2D卷积操作
"""
batch, in_ch, h, w = input_tile.shape
out_ch = weight_tile.shape[0]
kernel_size = weight_tile.shape[2]
# 对每个输出通道
for oc in pt.range(out_ch):
# 对每个batch
for b in pt.range(batch):
# 对每个输出位置
for oh in pt.range(h):
for ow in pt.range(w):
acc = 0.0
# 对每个输入通道
for ic in pt.range(in_ch):
# 对每个kernel位置
for kh in pt.range(kernel_size):
for kw in pt.range(kernel_size):
ih = oh + kh - params['padding']
iw = ow + kw - params['padding']
# 边界检查
if 0 <= ih < h and 0 <= iw < w:
acc += input_tile[b, ic, ih, iw] * weight_tile[oc, ic, kh, kw]
output_tile[b, oc, oh, ow] = acc
# 设置卷积参数
conv_params = {
'kernel_size': kernel_size,
'padding': padding,
'stride': stride
}
# 设置分块大小
tile_batch = 2
tile_out_ch = 32
tile_h = 16
tile_w = 16
# 执行卷积
pt.execute(conv2d_tile, input_tensor, weight, output,
tile_size=(tile_batch, tile_out_ch, tile_h, tile_w),
kwargs={'params': conv_params},
parallel=True)
result = output.to_numpy()
print("Convolution output shape:", result.shape)
五、高级特性示例
5.1 Reduce操作(归约)
import pypto as pt
import numpy as np
# 创建输入张量
input_tensor = pt.Tensor((1024, 1024), dtype=pt.float32)
sum_result = pt.Tensor((1,), dtype=pt.float32)
max_result = pt.Tensor((1,), dtype=pt.float32)
input_data = np.random.rand(1024, 1024).astype(np.float32)
input_tensor.from_numpy(input_data)
# 定义归约核函数
@pt.pto_kernel
def reduce_ops(input_tile: pt.Tile, sum_tile: pt.Tile,
max_tile: pt.Tile, op_type: str):
"""
归约操作:求和或求最大值
"""
if op_type == 'sum':
acc = 0.0
for i in pt.range(input_tile.shape[0]):
for j in pt.range(input_tile.shape[1]):
acc += input_tile[i, j]
sum_tile[0] = acc
elif op_type == 'max':
acc = -float('inf')
for i in pt.range(input_tile.shape[0]):
for j in pt.range(input_tile.shape[1]):
val = input_tile[i, j]
if val > acc:
acc = val
max_tile[0] = acc
# 执行求和归约
pt.execute(reduce_ops, input_tensor, sum_result, max_result,
tile_size=(256, 256),
kwargs={'op_type': 'sum'},
reduce_op='sum')
# 执行求最大值归约
pt.execute(reduce_ops, input_tensor, sum_result, max_result,
tile_size=(256, 256),
kwargs={'op_type': 'max'},
reduce_op='max')
sum_val = sum_result.to_numpy()[0]
max_val = max_result.to_numpy()[0]
print(f"Sum: {sum_val}, Max: {max_val}")
print(f"Expected Sum: {np.sum(input_data)}, Expected Max: {np.max(input_data)}")
5.2 逐元素操作
import pypto as pt
import numpy as np
# 创建输入张量
input_tensor = pt.Tensor((512, 512), dtype=pt.float32)
relu_output = pt.Tensor((512, 512), dtype=pt.float32)
sigmoid_output = pt.Tensor((512, 512), dtype=pt.float32)
input_data = np.random.randn(512, 512).astype(np.float32)
input_tensor.from_numpy(input_data)
# 定义ReLU激活函数
@pt.pto_kernel
def relu_kernel(input_tile: pt.Tile, output_tile: pt.Tile):
"""ReLU激活函数:max(0, x)"""
for i in pt.range(input_tile.shape[0]):
for j in pt.range(input_tile.shape[1]):
val = input_tile[i, j]
output_tile[i, j] = pt.max(0.0, val)
# 定义Sigmoid激活函数
@pt.pto_kernel
def sigmoid_kernel(input_tile: pt.Tile, output_tile: pt.Tile):
"""Sigmoid激活函数:1 / (1 + exp(-x))"""
for i in pt.range(input_tile.shape[0]):
for j in pt.range(input_tile.shape[1]):
val = input_tile[i, j]
output_tile[i, j] = 1.0 / (1.0 + pt.exp(-val))
# 执行ReLU
pt.execute(relu_kernel, input_tensor, relu_output,
tile_size=(128, 128), parallel=True)
# 执行Sigmoid
pt.execute(sigmoid_kernel, input_tensor, sigmoid_output,
tile_size=(128, 128), parallel=True)
relu_result = relu_output.to_numpy()
sigmoid_result = sigmoid_output.to_numpy()
print("ReLU completed, min:", relu_result.min(), "max:", relu_result.max())
print("Sigmoid completed, min:", sigmoid_result.min(), "max:", sigmoid_result.max())
5.3 转置操作
import pypto as pt
import numpy as np
# 创建输入张量
input_tensor = pt.Tensor((256, 512), dtype=pt.float32)
output_tensor = pt.Tensor((512, 256), dtype=pt.float32)
input_data = np.random.rand(256, 512).astype(np.float32)
input_tensor.from_numpy(input_data)
# 定义转置核函数
@pt.pto_kernel
def transpose_kernel(input_tile: pt.Tile, output_tile: pt.Tile):
"""
矩阵转置
"""
in_rows, in_cols = input_tile.shape
for i in pt.range(in_rows):
for j in pt.range(in_cols):
output_tile[j, i] = input_tile[i, j]
# 执行转置
pt.execute(transpose_kernel, input_tensor, output_tensor,
tile_size=(64, 64), parallel=True)
result = output_tensor.to_numpy()
expected = input_data.T
print("Transpose error:", np.max(np.abs(result - expected)))
六、性能优化技巧
6.1 自动分块优化
import pypto as pt
# 启用自动分块优化
pt_config = pt.PTOConfig(
auto_tile=True, # 自动计算最优分块大小
tile_alignment=64, # 分块对齐
use_cache=True, # 使用分块缓存
parallel='auto' # 自动选择并行策略
)
# 使用优化配置执行
@pt.pto_kernel(config=pt_config)
def optimized_kernel(input_tile: pt.Tile, output_tile: pt.Tile):
"""使用自动优化的核函数"""
for i in pt.range(input_tile.shape[0]):
for j in pt.range(input_tile.shape[1]):
output_tile[i, j] = input_tile[i, j] * 2.0
# 执行
pt.execute(optimized_kernel, input_tensor, output_tensor)
6.2 融合操作
import pypto as pt
# 定义融合操作:Add + ReLU
@pt.pto_kernel
def fused_add_relu(a: pt.Tile, b: pt.Tile, c: pt.Tile):
"""
融合加法和ReLU操作
c = relu(a + b)
"""
for i in pt.range(a.shape[0]):
for j in pt.range(a.shape[1]):
val = a[i, j] + b[i, j]
c[i, j] = pt.max(0.0, val)
# 执行融合操作
pt.execute(fused_add_relu, tensor_a, tensor_b, output_c,
tile_size=(128, 128),
fuse_ops=True) # 启用算子融合
6.3 流水线并行
import pypto as pt
# 定义流水线操作
pipeline = pt.Pipeline()
# 添加计算阶段
@pipeline.add_stage('load')
def load_data(input_tile: pt.Tile):
"""加载数据阶段"""
return input_tile
@pipeline.add_stage('compute', depends_on=['load'])
def compute(data: pt.Tile):
"""计算阶段"""
return data * 2.0
@pipeline.add_stage('store', depends_on=['compute'])
def store_data(result: pt.Tile, output_tile: pt.Tile):
"""存储数据阶段"""
output_tile[:] = result
# 执行流水线
pipeline.execute(input_tensor, output_tensor,
tile_size=(128, 128),
num_stages=3)
七、实际应用场景
7.1 图像处理流水线
import pypto as pt
import cv2
import numpy as np
# 读取图像
image = cv2.imread('input.jpg')
image_tensor = pt.Tensor.from_numpy(image.astype(np.float32) / 255.0)
# 定义图像处理流水线
@pt.pto_kernel
def rgb_to_gray(input_tile: pt.Tile, output_tile: pt.Tile):
"""RGB转灰度"""
for i in pt.range(input_tile.shape[0]):
for j in pt.range(input_tile.shape[1]):
r = input_tile[i, j, 0]
g = input_tile[i, j, 1]
b = input_tile[i, j, 2]
gray = 0.299 * r + 0.587 * g + 0.114 * b
output_tile[i, j] = gray
@pt.pto_kernel
def gaussian_blur(input_tile: pt.Tile, output_tile: pt.Tile, kernel: list):
"""高斯模糊"""
kh, kw = 3, 3
for i in pt.range(1, input_tile.shape[0] - 1):
for j in pt.range(1, input_tile.shape[1] - 1):
acc = 0.0
for ki in pt.range(kh):
for kj in pt.range(kw):
ni = i + ki - 1
nj = j + kj - 1
acc += input_tile[ni, nj] * kernel[ki * kw + kj]
output_tile[i, j] = acc
# 创建输出张量
gray_tensor = pt.Tensor((image.shape[0], image.shape[1]), dtype=pt.float32)
blur_tensor = pt.Tensor((image.shape[0], image.shape[1]), dtype=pt.float32)
# 执行图像处理
pt.execute(rgb_to_gray, image_tensor, gray_tensor,
tile_size=(256, 256), parallel=True)
# 高斯核
gaussian_kernel = [1/16, 2/16, 1/16,
2/16, 4/16, 2/16,
1/16, 2/16, 1/16]
pt.execute(gaussian_blur, gray_tensor, blur_tensor,
tile_size=(128, 128),
kwargs={'kernel': gaussian_kernel})
# 获取结果
result = blur_tensor.to_numpy()
cv2.imwrite('output.jpg', (result * 255).astype(np.uint8))
7.2 批处理推理
import pypto as pt
# 批处理矩阵乘法
def batch_matmul(A_list, B_list):
"""
批量矩阵乘法
Args:
A_list: 矩阵A列表
B_list: 矩阵B列表
Returns:
结果列表
"""
batch_size = len(A_list)
results = []
# 创建批处理张量
batch_A = pt.Tensor((batch_size, *A_list[0].shape), dtype=pt.float32)
batch_B = pt.Tensor((batch_size, *B_list[0].shape), dtype=pt.float32)
batch_C = pt.Tensor((batch_size, A_list[0].shape[0], B_list[0].shape[1]), dtype=pt.float32)
# 填充数据
for i, (A, B) in enumerate(zip(A_list, B_list)):
batch_A[i].from_numpy(A)
batch_B[i].from_numpy(B)
# 执行批量矩阵乘法
@pt.pto_kernel
def batch_matmul_kernel(A_batch: pt.Tile, B_batch: pt.Tile, C_batch: pt.Tile):
for b in pt.range(A_batch.shape[0]):
for i in pt.range(A_batch.shape[1]):
for j in pt.range(B_batch.shape[2]):
acc = 0.0
for k in pt.range(A_batch.shape[2]):
acc += A_batch[b, i, k] * B_batch[b, k, j]
C_batch[b, i, j] = acc
pt.execute(batch_matmul_kernel, batch_A, batch_B, batch_C,
tile_size=(4, 64, 64), parallel=True)
# 获取结果
for i in range(batch_size):
results.append(batch_C[i].to_numpy())
return results
八、性能优化建议
- 合理选择分块大小:根据Local Memory大小和数据局部性选择合适的分块
- 利用向量化:使用pypto提供的向量化操作替代循环
- 减少内存访问:尽量重用已加载的数据
- 使用融合操作:将多个操作融合为一个核函数
- 启用自动优化:利用pypto的自动优化功能
九、总结
pypto作为CANN生态系统中的创新编程范式,为开发者提供了一种更直观、更高效的张量计算编程方式。通过分块操作和并行计算的抽象,pypto大大降低了NPU编程的复杂度,同时保持了接近底层编程的性能。本文通过丰富的示例代码展示了pypto的核心功能和高级特性,帮助开发者快速掌握这一强大的编程工具。
相关链接:
- CANN组织链接:https://atomgit.com/cann
- pypto仓库链接:https://atomgit.com/cann/pypto
更多推荐


所有评论(0)