CANN_Transformer加速库ascend-transformer-boost的大模型推理性能优化实践
Transformer架构已成为自然语言处理和计算机视觉领域的主流模型架构。随着GPT、LLaMA等大语言模型的兴起,如何高效地在NPU上部署和推理Transformer模型成为关键挑战。ascend-transformer-boost是CANN生态中专门针对Transformer模型优化的加速库,提供了从算子级别到模型级别的全方位优化方案。
·
CANN_Transformer加速库ascend-transformer-boost的大模型推理性能优化实践
前言
Transformer架构已成为自然语言处理和计算机视觉领域的主流模型架构。随着GPT、LLaMA等大语言模型的兴起,如何高效地在NPU上部署和推理Transformer模型成为关键挑战。ascend-transformer-boost是CANN生态中专门针对Transformer模型优化的加速库,提供了从算子级别到模型级别的全方位优化方案。
相关链接:
- CANN组织链接:https://atomgit.com/cann
- ascend-transformer-boost仓库链接:https://atomgit.com/cann/ascend-transformer-boost
一、ascend-transformer-boost概述
1.1 设计目标
ascend-transformer-boost(以下简称ATB)的核心设计目标包括:
- 极致性能:充分发挥NPU硬件的并行计算能力
- 内存高效:优化KV Cache管理,降低显存占用
- 灵活配置:支持多种注意力机制的变体
- 易用性:提供简洁的API,快速集成到现有框架
- 可扩展:支持自定义算子和优化策略
1.2 核心组件
ascend-transformer-boost/
├── 注意力机制优化
│ ├── Flash Attention - 内存高效的注意力计算
│ ├── Paged Attention - 分页KV Cache管理
│ ├── MQA/GQA支持 - 多查询/分组查询注意力
│ └── Sliding Window - 滑动窗口注意力
├── 位置编码优化
│ ├── RoPE - 旋转位置编码
│ ├── ALiBi - Attention with Linear Biases
│ └── xPos - 绝对位置编码扩展
├── 优化算子库
│ ├── LayerNorm - RMSNorm、LayerNorm优化
│ ├── Activation - GeLU、SwiGLU激活函数
│ ├── FFN - 前馈网络优化
│ └── Embedding - 词嵌入查找优化
├── 推理加速
│ ├── Continuous Batching - 连续批处理
│ ├── Speculative Decoding - 投机解码
│ ├── KV Cache压缩 - 量化、剪枝
│ └── Static/Dynamic Shape - 静态/动态形状支持
└── Python API
├── atb.ops - 算子API
├── atb.models - 模型API
└── atb.utils - 工具函数
二、核心API详解
2.1 Flash Attention API
Flash Attention是ATB的核心优化技术,通过分块计算和内存重排显著减少内存访问:
import atb
import torch
def flash_attention(
q: torch.Tensor, # Query: [batch, seq_len, num_heads, head_dim]
k: torch.Tensor, # Key: [batch, seq_len, num_heads, head_dim]
v: torch.Tensor, # Value: [batch, seq_len, num_heads, head_dim]
causal: bool = True, # 是否使用因果掩码
dropout_p: float = 0.0, # Dropout概率
scale: float = None # 缩放因子
) -> torch.Tensor:
"""
Flash Attention实现
相比标准注意力,Flash Attention具有以下优势:
1. 内存复杂度从O(N^2)降至O(N)
2. 通过融合算子减少HBM访问
3. 分块计算提高缓存命中率
"""
return atb.ops.flash_attention(
q, k, v,
causal=causal,
dropout_p=dropout_p,
scale=scale,
algo=atb.ops.FlashAlgo.FWD # 前向计算
)
# 使用示例
batch_size, seq_len, num_heads, head_dim = 1, 2048, 32, 128
q = torch.randn(batch_size, seq_len, num_heads, head_dim, dtype=torch.float16).cuda()
k = torch.randn(batch_size, seq_len, num_heads, head_dim, dtype=torch.float16).cuda()
v = torch.randn(batch_size, seq_len, num_heads, head_dim, dtype=torch.float16).cuda()
# 执行Flash Attention
output = flash_attention(q, k, v, causal=True)
# 带梯度的Flash Attention(训练时使用)
class FlashAttentionFunction(torch.autograd.Function):
@staticmethod
def forward(ctx, q, k, v, causal, dropout_p):
out = atb.ops.flash_attention(q, k, v, causal=causal,
dropout_p=dropout_p,
algo=atb.ops.FlashAlgo.FWD)
ctx.save_for_backward(q, k, v)
ctx.causal = causal
ctx.dropout_p = dropout_p
return out
@staticmethod
def backward(ctx, grad_output):
q, k, v = ctx.saved_tensors
grad_q, grad_k, grad_v = atb.ops.flash_attention(
q, k, v,
grad_output=grad_output,
causal=ctx.causal,
dropout_p=ctx.dropout_p,
algo=atb.ops.FlashAlgo.BWD # 反向传播
)
return grad_q, grad_k, grad_v, None, None
2.2 PagedAttention API
PagedAttention实现了高效的KV Cache管理,支持动态批处理:
from atb.ops import PagedAttention
class PagedAttentionCache:
"""
分页KV Cache管理器
优势:
1. 避免内存碎片化
2. 支持动态批处理
3. 内存复用率高
"""
def __init__(
self,
num_blocks: int, # 总块数
block_size: int, # 每块的token数量
num_heads: int, # 注意力头数
head_dim: int, # 头维度
dtype: torch.dtype = torch.float16
):
self.num_blocks = num_blocks
self.block_size = block_size
self.num_heads = num_heads
self.head_dim = head_dim
self.dtype = dtype
# 分配KV Cache块池
self.k_cache = torch.empty(
num_blocks, block_size, num_heads, head_dim,
dtype=dtype, device='cuda'
)
self.v_cache = torch.empty(
num_blocks, block_size, num_heads, head_dim,
dtype=dtype, device='cuda'
)
# 块分配表(记录每个序列使用的块)
self.block_allocator = BlockAllocator(num_blocks)
def allocate(self, seq_len: int) -> list[int]:
"""为序列分配KV Cache块"""
num_blocks_needed = (seq_len + self.block_size - 1) // self.block_size
return self.block_allocator.allocate(num_blocks_needed)
def append(self, block_ids: list[int], tokens: torch.Tensor):
"""追加新token到KV Cache"""
# 将新token的KV写入对应块
pass
def read(self, block_ids: list[int]) -> tuple[torch.Tensor, torch.Tensor]:
"""读取KV Cache数据"""
# 根据块ID收集KV数据
pass
def free(self, block_ids: list[int]):
"""释放KV Cache块"""
self.block_allocator.free(block_ids)
class BlockAllocator:
"""块分配器 - 管理空闲块列表"""
def __init__(self, num_blocks: int):
self.num_blocks = num_blocks
self.free_blocks = list(range(num_blocks))
self.allocated = {} # seq_id -> block_ids
def allocate(self, num_blocks: int) -> list[int]:
if len(self.free_blocks) < num_blocks:
raise RuntimeError("Insufficient free blocks")
blocks = self.free_blocks[:num_blocks]
self.free_blocks = self.free_blocks[num_blocks:]
return blocks
def free(self, block_ids: list[int]):
self.free_blocks.extend(block_ids)
self.free_blocks.sort()
# PagedAttention计算
def paged_attention(
q: torch.Tensor, # [batch, num_heads, head_dim]
k_cache: torch.Tensor, # [num_blocks, block_size, num_heads, head_dim]
v_cache: torch.Tensor, # [num_blocks, block_size, num_heads, head_dim]
block_ids: list[list[int]], # 每个序列的块ID列表
context_lens: list[int], # 每个序列的上下文长度
scale: float = None
) -> torch.Tensor:
"""
使用Paged KV Cache计算注意力
处理流程:
1. 根据block_ids从分页Cache中收集KV
2. 对每个序列执行注意力计算
3. 处理不同长度的序列(动态批处理)
"""
return PagedAttention.forward(
q, k_cache, v_cache,
block_ids=block_ids,
context_lens=context_lens,
scale=scale
)
2.3 MQA/GQA API
多查询注意力和分组查询注意力减少了KV Cache的内存占用:
from atb.ops import MultiQueryAttention
class MultiQueryAttentionLayer(nn.Module):
"""
多查询注意力 (MQA) / 分组查询注意力 (GQA)
MQA: 所有头共享一对KV
GQA: 头分组共享KV
内存节省:
- MQA: KV Cache减少到1/num_heads
- GQA: KV Cache减少到1/(num_heads/num_kv_heads)
"""
def __init__(
self,
num_heads: int,
num_kv_heads: int, # GQA的KV头数,MQA时为1
head_dim: int,
dropout: float = 0.0
):
super().__init__()
self.num_heads = num_heads
self.num_kv_heads = num_kv_heads
self.head_dim = head_dim
self.dropout = dropout
# Q投影: (hidden_size, num_heads * head_dim)
# K/V投影: (hidden_size, num_kv_heads * head_dim)
hidden_size = num_heads * head_dim
self.q_proj = nn.Linear(hidden_size, num_heads * head_dim, bias=False)
self.k_proj = nn.Linear(hidden_size, num_kv_heads * head_dim, bias=False)
self.v_proj = nn.Linear(hidden_size, num_kv_heads * head_dim, bias=False)
self.o_proj = nn.Linear(num_heads * head_dim, hidden_size, bias=False)
# 使用ATB优化的MQA/GQA算子
self.attn_fn = atb.ops.multi_query_attention
def forward(
self,
x: torch.Tensor,
past_kv: tuple[torch.Tensor, torch.Tensor] = None,
use_cache: bool = False
) -> tuple[torch.Tensor, tuple[torch.Tensor, torch.Tensor]]:
batch_size, seq_len, hidden_size = x.shape
# 投影到QKV
q = self.q_proj(x) # [batch, seq_len, num_heads, head_dim]
k = self.k_proj(x) # [batch, seq_len, num_kv_heads, head_dim]
v = self.v_proj(x) # [batch, seq_len, num_kv_heads, head_dim]
# 重排为 [batch, num_heads, seq_len, head_dim]
q = q.view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2)
k = k.view(batch_size, seq_len, self.num_kv_heads, self.head_dim).transpose(1, 2)
v = v.view(batch_size, seq_len, self.num_kv_heads, self.head_dim).transpose(1, 2)
# 拼接历史KV(用于生成)
if past_kv is not None:
past_k, past_v = past_kv
k = torch.cat([past_k, k], dim=2)
v = torch.cat([past_v, v], dim=2)
# 使用ATB优化的MQA/GQA算子
attn_output = self.attn_fn(
q, k, v,
num_heads=self.num_heads,
num_kv_heads=self.num_kv_heads,
causal=True,
dropout_p=self.dropout if self.training else 0.0
)
# 输出投影
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.view(batch_size, seq_len, hidden_size)
output = self.o_proj(attn_output)
if use_cache:
return output, (k, v)
return output, None
# GQA配置示例
class GQALLaMAConfig:
"""LLaMA 2的GQA配置"""
def __init__(self):
self.hidden_size = 4096
self.num_attention_heads = 32
# LLaMA 2使用GQA减少KV Cache
self.num_key_value_heads = 8 # 每4个头共享1对KV
self.head_dim = 128
@property
def kv_cache_ratio(self):
return self.num_key_value_heads / self.num_attention_heads # 0.25
2.4 位置编码API
from atb.ops import RotaryEmbedding
class RotaryPositionEmbedding(nn.Module):
"""
旋转位置编码 (RoPE)
优势:
1. 相对位置编码,可外推到更长序列
2. 无额外参数
3. 计算高效
"""
def __init__(
self,
head_dim: int,
max_position: int = 8192,
base: int = 10000,
theta: float = 10000.0
):
super().__init__()
self.head_dim = head_dim
self.max_position = max_position
self.base = base
self.theta = theta
# 预计算频率
self._init_freqs()
# 使用ATB优化的RoPE算子
self.rope_fn = atb.ops.apply_rotary_pos_emb
def _init_freqs(self):
"""初始化旋转频率"""
half_dim = self.head_dim // 2
freqs = torch.log(torch.arange(self.base, dtype=torch.float32))
freqs = freqs / torch.arange(half_dim, dtype=torch.float32)
freqs = torch.exp(freqs * -torch.log(torch.tensor(self.theta)))
self.register_buffer('freqs', freqs)
def forward(
self,
x: torch.Tensor, # [batch, num_heads, seq_len, head_dim]
positions: torch.Tensor # [seq_len] 或 [batch, seq_len]
) -> torch.Tensor:
"""
应用旋转位置编码
对Query和Key的每对维度应用旋转:
(x, y) -> (x*cosθ - y*sinθ, x*sinθ + y*cosθ)
"""
return self.rope_fn(x, positions, self.freqs)
class ALiBiPositionEmbedding(nn.Module):
"""
Attention with Linear Biases (ALiBi)
优势:
1. 无需训练位置编码
2. 可外推到更长序列
3. 计算简单高效
"""
def __init__(
self,
num_heads: int,
max_seq_len: int = 4096
):
super().__init__()
self.num_heads = num_heads
self.max_seq_len = max_seq_len
self.alibi_fn = atb.ops.apply_alibi_bias
def forward(
self,
attn_scores: torch.Tensor, # [batch, num_heads, seq_len, seq_len]
seq_len: int
) -> torch.Tensor:
"""应用ALiBi偏置"""
# ALiBi偏置: -|i - j| * head_scale
return self.alibi_fn(attn_scores, seq_len, self.num_heads)
2.5 连续批处理API
from atb.serving import ContinuousBatchScheduler
class ContinuousBatchManager:
"""
连续批处理管理器
核心思想:
1. 动态地将请求添加/移出批次
2. 不同序列可以处于不同生成阶段
3. 最大化GPU利用率
"""
def __init__(
self,
max_batch_size: int,
max_seq_len: int,
block_size: int = 16
):
self.max_batch_size = max_batch_size
self.max_seq_len = max_seq_len
self.block_size = block_size
# KV Cache管理
self.cache_manager = PagedAttentionCache(
num_blocks=max_batch_size * (max_seq_len // block_size),
block_size=block_size,
num_heads=32,
head_dim=128
)
# 请求队列
self.pending_queue = [] # 等待处理的请求
self.running_requests = {} # 正在处理的请求
self.completed_requests = [] # 已完成的请求
# 调度器
self.scheduler = ContinuousBatchScheduler(
max_batch_size=max_batch_size,
max_seq_len=max_seq_len
)
def add_request(self, request_id: str, prompt_tokens: torch.Tensor):
"""添加新请求"""
self.pending_queue.append({
'request_id': request_id,
'prompt_tokens': prompt_tokens,
'state': 'pending'
})
def step(self) -> dict[str, torch.Tensor]:
"""
执行一步推理
返回: {request_id: generated_token}
"""
# 1. 调度:选择可以处理的请求
batched_requests = self.scheduler.schedule(
self.pending_queue,
self.running_requests
)
# 2. 准备批次数据
batch_data = self._prepare_batch(batched_requests)
# 3. 执行前向计算
outputs = self._forward_batch(batch_data)
# 4. 更新状态和KV Cache
completed, generated = self._update_state(batched_requests, outputs)
# 5. 返回生成的token
return generated
def _prepare_batch(self, requests: list) -> dict:
"""准备批次数据"""
batch_tokens = []
block_ids_list = []
context_lens = []
for req in requests:
req_id = req['request_id']
req_state = self.running_requests[req_id]
# 获取当前要生成的token
batch_tokens.append(req_state['next_token'])
# 获取KV Cache块
block_ids_list.append(req_state['block_ids'])
# 记录上下文长度
context_lens.append(req_state['context_len'])
return {
'tokens': torch.stack(batch_tokens),
'block_ids': block_ids_list,
'context_lens': context_lens
}
def _forward_batch(self, batch_data: dict) -> torch.Tensor:
"""执行批次前向计算"""
# 1. 嵌入查找
input_ids = batch_data['tokens']
hidden_states = self.model.embedding(input_ids)
# 2. Transformer层(使用PagedAttention)
for layer in self.model.layers:
hidden_states = layer(
hidden_states,
block_ids=batch_data['block_ids'],
context_lens=batch_data['context_lens']
)
# 3. 输出投影
logits = self.model.lm_head(hidden_states)
next_tokens = torch.argmax(logits, dim=-1)
return next_tokens
def _update_state(
self,
requests: list,
outputs: torch.Tensor
) -> tuple[list[str], dict[str, torch.Tensor]]:
"""更新请求状态"""
completed = []
generated = {}
for i, req in enumerate(requests):
req_id = req['request_id']
token = outputs[i]
# 检查是否完成
if token.item() == self.model.eos_token_id:
completed.append(req_id)
del self.running_requests[req_id]
else:
# 更新状态
self.running_requests[req_id]['next_token'] = token
self.running_requests[req_id]['context_len'] += 1
generated[req_id] = token
# 将完成的请求移到完成队列
for req_id in completed:
req = next(r for r in requests if r['request_id'] == req_id)
self.completed_requests.append(req)
return completed, generated
三、应用实践
3.1 完整的LLaMA模型实现
import atb
import torch.nn as nn
class LLaMAAttention(nn.Module):
"""LLaMA风格的注意力层"""
def __init__(self, config):
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = config.head_dim
self.num_kv_heads = config.num_key_value_heads
# 投影层
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
self.k_proj = nn.Linear(self.hidden_size, self.num_kv_heads * self.head_dim, bias=False)
self.v_proj = nn.Linear(self.hidden_size, self.num_kv_heads * self.head_dim, bias=False)
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
# RoPE
self.rotary_emb = RotaryEmbedding(
head_dim=self.head_dim,
max_position=config.max_position_embeddings
)
def forward(
self,
hidden_states: torch.Tensor,
past_kv: tuple = None,
use_cache: bool = False,
position_ids: torch.Tensor = None
):
batch_size, seq_len, _ = hidden_states.shape
# 投影
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
# 重排形状
query_states = query_states.view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(batch_size, seq_len, self.num_kv_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(batch_size, seq_len, self.num_kv_heads, self.head_dim).transpose(1, 2)
# 应用RoPE
query_states = self.rotary_emb(query_states, position_ids)
key_states = self.rotary_emb(key_states, position_ids)
# 拼接历史KV
if past_kv is not None:
past_key, past_value = past_kv
key_states = torch.cat([past_key, key_states], dim=2)
value_states = torch.cat([past_value, value_states], dim=2)
# 使用ATB优化的注意力算子
attn_output = atb.ops.multi_query_attention(
query_states,
key_states,
value_states,
num_heads=self.num_heads,
num_kv_heads=self.num_kv_heads,
causal=True,
use_flash_attn=True # 使用Flash Attention
)
# 输出投影
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.view(batch_size, seq_len, self.hidden_size)
output = self.o_proj(attn_output)
if use_cache:
return output, (key_states, value_states)
return output, None
class LLaMAMLP(nn.Module):
"""LLaMA的MLP层 (使用SwiGLU激活)"""
def __init__(self, config):
super().__init__()
self.hidden_size = config.hidden_size
self.intermediate_size = config.intermediate_size
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
def forward(self, x):
# SwiGLU: Swish(xW) ⊙ (xV)
gate = self.gate_proj(x)
gate = atb.ops.swish(gate) # 使用ATB优化的SwiGLU
up = self.up_proj(x)
return self.down_proj(gate * up)
class LLaMADecoderLayer(nn.Module):
"""LLaMA解码器层"""
def __init__(self, config):
super().__init__()
self.hidden_size = config.hidden_size
# RMSNorm
self.input_layernorm = atb.ops.RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = atb.ops.RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
# 自注意力和MLP
self.self_attn = LLaMAAttention(config)
self.mlp = LLaMAMLP(config)
def forward(
self,
hidden_states: torch.Tensor,
past_kv: tuple = None,
use_cache: bool = False,
position_ids: torch.Tensor = None
):
# 自注意力
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
hidden_states, present_kv = self.self_attn(
hidden_states,
past_kv=past_kv,
use_cache=use_cache,
position_ids=position_ids
)
hidden_states = residual + hidden_states
# MLP
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
if use_cache:
return hidden_states, present_kv
return hidden_states, None
class LLaMAModel(nn.Module):
"""完整的LLaMA模型"""
def __init__(self, config):
super().__init__()
self.config = config
self.embedding = nn.Embedding(config.vocab_size, config.hidden_size)
self.layers = nn.ModuleList([
LLaMADecoderLayer(config) for _ in range(config.num_hidden_layers)
])
self.norm = atb.ops.RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
def forward(
self,
input_ids: torch.Tensor,
past_kvs: list[tuple] = None,
use_cache: bool = False,
position_ids: torch.Tensor = None
):
batch_size, seq_len = input_ids.shape
# 嵌入
hidden_states = self.embedding(input_ids)
# 生成位置ID
if position_ids is None:
position_ids = torch.arange(seq_len, dtype=torch.long, device=input_ids.device)
position_ids = position_ids.unsqueeze(0).expand(batch_size, -1)
# 通过所有层
present_kvs = []
for i, layer in enumerate(self.layers):
past_kv = past_kvs[i] if past_kvs is not None else None
hidden_states, present_kv = layer(
hidden_states,
past_kv=past_kv,
use_cache=use_cache,
position_ids=position_ids
)
if use_cache:
present_kvs.append(present_kv)
# 归一化和输出
hidden_states = self.norm(hidden_states)
logits = self.lm_head(hidden_states)
if use_cache:
return logits, present_kvs
return logits, None
class LLaMAGenerator:
"""LLaMA文本生成器 - 使用ATB优化"""
def __init__(self, model: LLaMAModel, tokenizer):
self.model = model
self.tokenizer = tokenizer
@torch.no_grad()
def generate(
self,
prompt: str,
max_new_tokens: int = 100,
temperature: float = 1.0,
top_p: float = 0.9,
use_kv_cache: bool = True
) -> str:
# 编码prompt
input_ids = self.tokenizer.encode(prompt, return_tensors='pt').cuda()
# Prefill阶段
past_kvs = None
position_ids = None
outputs = self.model(input_ids, past_kvs=past_kvs, use_cache=use_kv_cache)
logits, past_kvs = outputs
next_token = self._sample(logits[:, -1], temperature, top_p)
generated = [next_token]
# Decode阶段 - 逐token生成
for _ in range(max_new_tokens - 1):
# 使用KV Cache加速
outputs = self.model(
next_token.unsqueeze(-1),
past_kvs=past_kvs,
use_cache=use_kv_cache,
position_ids=torch.tensor([[past_kvs[0][0].shape[2]]], device=input_ids.device)
)
logits, past_kvs = outputs
next_token = self._sample(logits[:, -1], temperature, top_p)
generated.append(next_token)
# 检查EOS
if next_token.item() == self.tokenizer.eos_token_id:
break
# 解码
output_ids = torch.cat([input_ids, torch.stack(generated).squeeze(-1)], dim=1)
return self.tokenizer.decode(output_ids[0], skip_special_tokens=True)
def _sample(self, logits: torch.Tensor, temperature: float, top_p: float) -> torch.Tensor:
"""采样下一个token"""
# 温度缩放
logits = logits / temperature
# Top-p采样
if top_p < 1.0:
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
cumulative_probs = torch.cumsum(torch.softmax(sorted_logits, dim=-1), dim=-1)
sorted_indices_to_remove = cumulative_probs > top_p
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
sorted_indices_to_remove[..., 0] = 0
indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove)
logits[indices_to_remove] = float('-inf')
# 采样
probs = torch.softmax(logits, dim=-1)
next_token = torch.multinomial(probs, num_samples=1)
return next_token
3.2 投机解码实现
from atb.ops import SpeculativeDecoder
class SpeculativeDecodingHelper:
"""
投机解码助手
核心思想:
1. 使用小模型快速预测多个token
2. 使用大模型并行验证预测结果
3. 接受正确的预测,拒绝错误的预测
4. 平均加速比可达2-3x
"""
def __init__(
self,
draft_model: nn.Module, # 小模型(用于快速预测)
target_model: nn.Module, # 大模型(用于验证)
tokenizer,
speculate_k: int = 5 # 每次预测的token数
):
self.draft_model = draft_model
self.target_model = target_model
self.tokenizer = tokenizer
self.speculate_k = speculate_k
@torch.no_grad()
def generate(
self,
prompt: str,
max_new_tokens: int = 100
) -> str:
input_ids = self.tokenizer.encode(prompt, return_tensors='pt').cuda()
for _ in range(max_new_tokens // self.speculate_k):
# 1. Draft模型预测K个token
draft_tokens = self._draft_predict(input_ids, self.speculate_k)
# 2. 将draft tokens连接到输入
candidate_ids = torch.cat([input_ids, draft_tokens], dim=1)
# 3. Target模型并行验证
verified_tokens = self._target_verify(input_ids, draft_tokens, candidate_ids)
# 4. 更新输入
input_ids = torch.cat([input_ids, verified_tokens], dim=1)
# 5. 检查是否停止
if verified_tokens.shape[1] < self.speculate_k:
break
return self.tokenizer.decode(input_ids[0], skip_special_tokens=True)
def _draft_predict(self, input_ids: torch.Tensor, k: int) -> torch.Tensor:
"""使用draft模型预测k个token"""
tokens = []
current_ids = input_ids
for _ in range(k):
logits = self.draft_model(current_ids)
next_token = torch.argmax(logits[:, -1], dim=-1, keepdim=True)
tokens.append(next_token)
current_ids = torch.cat([current_ids, next_token], dim=1)
return torch.cat(tokens, dim=1)
def _target_verify(
self,
input_ids: torch.Tensor,
draft_tokens: torch.Tensor,
candidate_ids: torch.Tensor
) -> torch.Tensor:
"""使用target模型验证draft tokens"""
# 获取target模型在候选序列上的logits
logits = self.target_model(candidate_ids)
# 提取对应draft tokens位置的logits
# input_ids长度为L,draft_tokens长度为K
# 我们需要验证位置L, L+1, ..., L+K-1的token
start_idx = input_ids.shape[1] - 1
verified_tokens = []
for i in range(draft_tokens.shape[1]):
pos = start_idx + i
target_logits = logits[:, pos, :] # [batch, vocab_size]
draft_token = draft_tokens[:, i] # [batch]
# 检查target模型是否也预测draft_token
target_prediction = torch.argmax(target_logits, dim=-1)
if torch.equal(target_prediction, draft_token):
verified_tokens.append(draft_token[:, i:i+1])
else:
# 验证失败,使用target模型的预测
verified_tokens.append(target_prediction[:, i:i+1].unsqueeze(0))
break # 停止验证
if verified_tokens:
return torch.cat(verified_tokens, dim=1)
return torch.empty(1, 0, dtype=torch.long, device=input_ids.device)
四、性能优化技巧
4.1 量化优化
from atb.quantization import quantize_weights, quantize_kv_cache
# 权重量化
def quantize_model_for_inference(model: nn.Module):
"""
量化模型以减少内存占用和提升性能
INT8量化:
- 权重: FP32 -> INT8
- 激活: FP32 -> INT8
- 内存节省: 4x
- 加速: 2-3x
"""
# 量化Linear层权重
for name, module in model.named_modules():
if isinstance(module, nn.Linear):
q_weight, scale, zero_point = quantize_weights(module.weight.data)
module.register_buffer('q_weight', q_weight)
module.register_buffer('scale', scale)
module.register_buffer('zero_point', zero_point)
module.weight.data = q_weight
return model
# KV Cache量化
class QuantizedKVCache:
"""量化KV Cache - 减少显存占用"""
def __init__(self, dtype: torch.dtype = torch.float16):
self.dtype = dtype
self.quant_dtype = torch.int8 # 量化为INT8
def quantize(self, kv: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor]:
"""
量化KV Cache
FP16 -> INT8
内存节省: 2x
"""
scale = kv.abs().max() / 127.0
q_kv = (kv / scale).round().to(torch.int8)
return q_kv, scale
def dequantize(
self,
q_kv: torch.Tensor,
scale: torch.Tensor
) -> torch.Tensor:
"""反量化"""
return q_kv.to(self.dtype) * scale
4.2 算子融合优化
from atb.fusion import fused_ops
class FusedTransformerBlock(nn.Module):
"""融合的Transformer块"""
def __init__(self, config):
super().__init__()
# 使用融合算子
self.fused_mha = fused_ops.FusedMultiHeadAttention(
num_heads=config.num_heads,
head_dim=config.head_dim
)
self.fused_mlp = fused_ops.FusedMLP(
hidden_size=config.hidden_size,
intermediate_size=config.intermediate_size,
activation='swiglu'
)
self.fused_norm = fused_ops.FusedRMSNorm(config.hidden_size)
def forward(self, x, past_kv=None):
# 单个融合算子完成: QKV投影 + 注意力 + 输出投影 + 残差连接 + LayerNorm
x, past_kv = self.fused_mha(x, past_kv=past_kv)
# 单个融合算子完成: 门控投影 + 激活 + 上投影 + 下投影 + 残差连接 + LayerNorm
x = self.fused_mlp(x)
return x, past_kv
五、总结
ascend-transformer-boost提供了全方位的Transformer模型加速方案,从底层算子优化到高层推理策略。通过Flash Attention、PagedAttention、连续批处理等技术的组合使用,可以在保持精度的同时显著提升大语言模型的推理性能。
相关链接:
- CANN组织链接:https://atomgit.com/cann
- ascend-transformer-boost仓库链接:https://atomgit.com/cann/ascend-transformer-boost
更多推荐


所有评论(0)