问题二:

https://blog.csdn.net/m0_52343631/article/details/157541917?spm=1001.2014.3001.5502

https://blog.csdn.net/m0_52343631/article/details/157541917?spm=1001.2014.3001.5502https://blog.csdn.net/m0_52343631/article/details/157541917?spm=1001.2014.3001.5502https://blog.csdn.net/m0_52343631/article/details/157541917

问题三:

https://blog.csdn.net/m0_52343631/article/details/157542025?spm=1001.2014.3001.5502

https://blog.csdn.net/m0_52343631/article/details/157542025?spm=1001.2014.3001.5502https://blog.csdn.net/m0_52343631/article/details/157542025?spm=1001.2014.3001.5502https://blog.csdn.net/m0_52343631/article/details/157542025

一、问题1的数学建模深度分析

1.1 问题背景与核心挑战

问题1要求我们为建造100,000人月球殖民地所需运输1亿吨材料,设计并比较三种不同的运输方案。这个问题的复杂性在于需要同时考虑多个相互关联的因素:

  1. 运输系统的技术特性差异:太空电梯系统与传统火箭系统在运载能力、成本结构、可靠性、环境影响等方面存在本质差异

  2. 时间维度约束:运输时间直接影响殖民地的建设周期和成本

  3. 资源分配优化:在混合方案中需要优化两种运输方式的比例分配

  4. 系统可靠性影响:非完美工作条件对运输效率的影响

1.2 数学模型构建原理

1.2.1 基础数学模型框架

我们建立一个多目标优化模型,主要目标函数包括:

  1. 最小化总成本:$C_{total} = C_{transport} + C_{maintenance} + C_{risk}$

  2. 最小化运输时间:$T_{total} = f(Q, C_{capacity}, η)$

  3. 最小化环境影响:$E_{total} = Σ(E_i × Q_i)$

其中:

  • $Q$ 为总运输量(1亿吨)

  • $C_{capacity}$ 为运输系统的运载能力

  • $η$ 为系统可靠性系数

  • $E_i$ 为每吨材料的单位环境影响

1.2.2 太空电梯系统的详细建模

太空电梯系统由三个银河港口组成,每个港口的具体技术参数需要详细建模:

class GalacticHarborModel:
    """银河港口详细技术模型"""
    
    def __init__(self):
        # 基础技术参数
        self.tether_length = 100000  # 公里
        self.tether_material = "graphene"  # 系绳材料
        self.number_of_tethers = 2  # 每个港口系绳数量
        self.elevators_per_harbor = 4  # 每个港口电梯数量
        
        # 性能参数
        self.max_payload_per_elevator = 50000  # 吨/天(单个电梯)
        self.energy_consumption_per_ton = 500  # 千瓦时/吨
        self.operational_lifetime = 50  # 年
        
        # 成本参数(百万美元)
        self.construction_cost = 200000  # 建设成本
        self.operation_cost_per_ton = 0.5  # 运营成本/吨
        self.maintenance_cost_per_year = 500  # 年维护成本
        
        # 环境参数
        self.co2_emission_per_ton = 0.1  # 吨CO2/吨货物
        self.energy_source = "solar_power"  # 能源类型
        
    def calculate_daily_capacity(self, reliability=1.0):
        """计算每日运输能力"""
        base_capacity = self.elevators_per_harbor * self.max_payload_per_elevator
        return base_capacity * reliability
    
    def calculate_annual_capacity(self, operational_days=365, reliability=1.0):
        """计算年运输能力"""
        daily_capacity = self.calculate_daily_capacity(reliability)
        return daily_capacity * operational_days
    
    def analyze_technical_constraints(self):
        """分析技术约束"""
        constraints = {
            'tether_stress_limit': self.calculate_tether_stress(),
            'power_requirements': self.calculate_power_needs(),
            'thermal_management': self.analyze_thermal_issues(),
            'orbital_mechanics': self.analyze_orbital_dynamics()
        }
        return constraints
    
    def calculate_tether_stress(self):
        """计算系绳应力"""
        # 基于材料特性的应力分析
        graphene_tensile_strength = 130  # GPa
        tether_cross_section = 1.0  # 平方米
        max_tension = graphene_tensile_strength * 1e9 * tether_cross_section  # 牛顿
        
        # 考虑载荷和离心力
        earth_gravity = 9.81  # m/s²
        rotational_velocity = 465  # m/s(赤道处)
        
        stress_analysis = {
            'max_theoretical_tension': max_tension,
            'safety_factor': 3.0,  # 安全系数
            'allowable_load': max_tension / 3.0
        }
        return stress_analysis
1.2.3 火箭发射系统的详细建模

传统火箭系统的建模需要考虑更多的不确定性和变异性:

class RocketLaunchSystemModel:
    """火箭发射系统详细模型"""
    
    def __init__(self):
        # 全球发射基地参数
        self.launch_sites = {
            'Alaska': {'capacity': 12, 'cost_per_launch': 150, 'reliability': 0.95},
            'California': {'capacity': 24, 'cost_per_launch': 120, 'reliability': 0.96},
            'Texas': {'capacity': 18, 'cost_per_launch': 130, 'reliability': 0.94},
            'Florida': {'capacity': 36, 'cost_per_launch': 110, 'reliability': 0.97},
            'Virginia': {'capacity': 12, 'cost_per_launch': 140, 'reliability': 0.93},
            'Kazakhstan': {'capacity': 20, 'cost_per_launch': 100, 'reliability': 0.92},
            'French_Guiana': {'capacity': 24, 'cost_per_launch': 115, 'reliability': 0.96},
            'India': {'capacity': 16, 'cost_per_launch': 95, 'reliability': 0.91},
            'China': {'capacity': 30, 'cost_per_launch': 105, 'reliability': 0.94},
            'New_Zealand': {'capacity': 8, 'cost_per_launch': 160, 'reliability': 0.90}
        }
        
        # 火箭技术参数
        self.rocket_types = {
            'Falcon_Heavy_Advanced': {
                'payload_to_moon': 130,  # 吨
                'launch_cost': 150,  # 百万美元
                'co2_emission': 2500,  # 吨CO2/发射
                'turnaround_time': 14  # 天
            },
            'Starship': {
                'payload_to_moon': 150,
                'launch_cost': 100,
                'co2_emission': 2800,
                'turnaround_time': 7
            }
        }
        
    def optimize_launch_schedule(self, total_payload, selected_sites=None, rocket_type='Falcon_Heavy_Advanced'):
        """优化发射计划"""
        if selected_sites is None:
            selected_sites = list(self.launch_sites.keys())
        
        rocket = self.rocket_types[rocket_type]
        payload_per_launch = rocket['payload_to_moon']
        
        # 计算总发射次数
        total_launches = np.ceil(total_payload / payload_per_launch)
        
        # 分配发射任务到各个基地
        site_capacities = {site: self.launch_sites[site]['capacity'] for site in selected_sites}
        total_capacity = sum(site_capacities.values())
        
        launch_allocation = {}
        remaining_launches = total_launches
        
        for site, capacity in site_capacities.items():
            allocation = min(capacity * 365 / rocket['turnaround_time'], remaining_launches)
            launch_allocation[site] = allocation
            remaining_launches -= allocation
        
        return {
            'total_launches': total_launches,
            'launch_allocation': launch_allocation,
            'years_needed': total_launches / (total_capacity * 365 / rocket['turnaround_time']),
            'rocket_type': rocket_type
        }
    
    def calculate_environmental_impact(self, launch_schedule):
        """计算环境影响"""
        rocket = self.rocket_types[launch_schedule['rocket_type']]
        total_launches = launch_schedule['total_launches']
        
        co2_emissions = total_launches * rocket['co2_emission']
        
        # 考虑其他环境影响
        other_impacts = {
            'atmospheric_pollution': total_launches * 50,  # 吨污染物
            'noise_pollution': total_launches * 100,  # 噪音影响指数
            'local_ecosystem_impact': total_launches * 2  # 生态系统影响指数
        }
        
        return {
            'co2_emissions_tons': co2_emissions,
            'other_impacts': other_impacts,
            'emissions_per_ton': co2_emissions / (total_launches * rocket['payload_to_moon'])
        }

1.3 场景A:仅使用太空电梯系统的详细分析

1.3.1 运输能力建模

太空电梯系统的年运输能力计算公式:

$C_{annual} = N_{harbors} × N_{elevators} × P_{daily} × D_{operational} × η$

其中:

  • $N_{harbors} = 3$(银河港口数量)

  • $N_{elevators} = 4$(每个港口电梯数量)

  • $P_{daily} = 50,000$吨/天(单个电梯日运输能力)

  • $D_{operational} = 365$天/年

  • $η = 0.95$(系统可靠性)

class ScenarioAAnalysis:
    """场景A:仅太空电梯的详细分析"""
    
    def __init__(self):
        self.total_material = 1e8  # 1亿吨
        self.harbor_model = GalacticHarborModel()
        
    def detailed_transport_plan(self):
        """详细运输计划"""
        # 计算年运输能力
        annual_capacity = 3 * self.harbor_model.calculate_annual_capacity()
        
        # 计算总时间
        years_needed = self.total_material / annual_capacity
        
        # 分阶段运输计划
        phases = self.define_construction_phases(years_needed)
        
        # 成本分析
        cost_breakdown = self.calculate_cost_breakdown(years_needed)
        
        # 风险评估
        risk_analysis = self.associate_risks()
        
        return {
            'annual_capacity_tons': annual_capacity,
            'years_needed': years_needed,
            'completion_year': 2050 + years_needed,
            'phases': phases,
            'cost_breakdown': cost_breakdown,
            'risk_analysis': risk_analysis
        }
    
    def define_construction_phases(self, total_years):
        """定义建设阶段"""
        phases = [
            {
                'name': 'Phase 1: 基础建设阶段',
                'duration_years': total_years * 0.3,
                'material_percentage': 0.4,
                'priority_materials': ['结构钢材', '建筑材料', '重型设备'],
                'logistics_requirements': '高密度,大体积运输'
            },
            {
                'name': 'Phase 2: 系统安装阶段',
                'duration_years': total_years * 0.4,
                'material_percentage': 0.45,
                'priority_materials': ['生命支持系统', '能源系统', '通信设备'],
                'logistics_requirements': '精密设备,防震运输'
            },
            {
                'name': 'Phase 3: 完善与调试阶段',
                'duration_years': total_years * 0.3,
                'material_percentage': 0.15,
                'priority_materials': ['内饰材料', '科学设备', '备用部件'],
                'logistics_requirements': '小批量,高频次运输'
            }
        ]
        return phases
    
    def calculate_cost_breakdown(self, years_needed):
        """成本细分分析"""
        # 建设成本(一次性)
        construction_cost = 3 * self.harbor_model.construction_cost  # 三个港口
        
        # 运营成本
        operation_cost = self.total_material * self.harbor_model.operation_cost_per_ton
        
        # 维护成本
        maintenance_cost = years_needed * 3 * self.harbor_model.maintenance_cost_per_year
        
        # 能源成本
        energy_consumption = self.total_material * self.harbor_model.energy_consumption_per_ton  # 千瓦时
        energy_cost = energy_consumption * 0.15 / 1000  # 电价0.15美元/千瓦时,转换为百万美元
        
        total_cost = construction_cost + operation_cost + maintenance_cost + energy_cost
        
        return {
            'construction_cost': construction_cost,
            'operation_cost': operation_cost,
            'maintenance_cost': maintenance_cost,
            'energy_cost': energy_cost,
            'total_cost': total_cost,
            'cost_per_ton': total_cost / self.total_material
        }
    
    def associate_risks(self):
        """风险评估"""
        risks = [
            {
                'risk_type': '技术风险',
                'description': '系绳材料疲劳或断裂',
                'probability': 0.05,
                'impact': '灾难性',
                'mitigation': '定期检测,冗余设计'
            },
            {
                'risk_type': '运营风险',
                'description': '电梯机械故障',
                'probability': 0.1,
                'impact': '高',
                'mitigation': '预防性维护,备用电梯'
            },
            {
                'risk_type': '环境风险',
                'description': '太空碎片碰撞',
                'probability': 0.03,
                'impact': '高',
                'mitigation': '主动避让系统,加固设计'
            },
            {
                'risk_type': '经济风险',
                'description': '能源价格波动',
                'probability': 0.2,
                'impact': '中',
                'mitigation': '长期能源合同,多元化能源'
            }
        ]
        return risks
    
    def perform_sensitivity_analysis(self):
        """敏感性分析"""
        parameters = {
            'reliability': np.arange(0.8, 1.01, 0.05),
            'daily_capacity': np.arange(40000, 60001, 5000),
            'operational_days': np.arange(300, 366, 10)
        }
        
        results = []
        for param_name, values in parameters.items():
            for value in values:
                if param_name == 'reliability':
                    annual_cap = 3 * self.harbor_model.calculate_annual_capacity(reliability=value)
                elif param_name == 'daily_capacity':
                    original = self.harbor_model.max_payload_per_elevator
                    self.harbor_model.max_payload_per_elevator = value
                    annual_cap = 3 * self.harbor_model.calculate_annual_capacity()
                    self.harbor_model.max_payload_per_elevator = original
                else:
                    annual_cap = 3 * self.harbor_model.calculate_annual_capacity(operational_days=value)
                
                years = self.total_material / annual_cap
                results.append({
                    'parameter': param_name,
                    'value': value,
                    'annual_capacity': annual_cap,
                    'years_needed': years
                })
        
        return pd.DataFrame(results)
1.3.2 时间序列分析与进度安排

class TimeSeriesAnalysis:
    """时间序列详细分析"""
    
    def __init__(self, scenario_a_analysis):
        self.analysis = scenario_a_analysis
        self.total_years = None
        
    def create_detailed_schedule(self):
        """创建详细时间表"""
        plan = self.analysis.detailed_transport_plan()
        self.total_years = plan['years_needed']
        
        # 创建月级进度表
        monthly_schedule = []
        current_material = 0
        monthly_capacity = plan['annual_capacity_tons'] / 12
        
        for month in range(int(self.total_years * 12)):
            month_data = {
                'month': month + 1,
                'year': 2050 + month // 12,
                'month_of_year': (month % 12) + 1,
                'material_delivered': monthly_capacity,
                'cumulative_material': current_material + monthly_capacity,
                'completion_percentage': (current_material + monthly_capacity) / self.total_material * 100
            }
            
            # 考虑季节性因素
            if (month % 12) in [0, 1, 11]:  # 冬季月份
                month_data['efficiency_factor'] = 0.9
                month_data['actual_delivery'] = monthly_capacity * 0.9
            else:
                month_data['efficiency_factor'] = 1.0
                month_data['actual_delivery'] = monthly_capacity
            
            monthly_schedule.append(month_data)
            current_material += month_data['actual_delivery']
        
        return pd.DataFrame(monthly_schedule)
    
    def analyze_critical_path(self):
        """关键路径分析"""
        critical_path = {
            'milestones': [
                {'name': '港口建设完成', 'time_months': 0, 'dependency': None},
                {'name': '首批材料到达', 'time_months': 6, 'dependency': '港口建设完成'},
                {'name': '基础结构完成30%', 'time_months': 24, 'dependency': '首批材料到达'},
                {'name': '生命支持系统安装', 'time_months': 48, 'dependency': '基础结构完成30%'},
                {'name': '能源系统上线', 'time_months': 72, 'dependency': '生命支持系统安装'},
                {'name': '殖民地首批居民', 'time_months': 96, 'dependency': '能源系统上线'},
                {'name': '全部建设完成', 'time_months': int(self.total_years * 12), 'dependency': '殖民地首批居民'}
            ],
            'critical_activities': [
                '系绳部署与调试',
                '电梯生产与安装',
                '运输系统集成测试',
                '连续运营建立'
            ]
        }
        return critical_path

1.4 场景B:仅使用传统火箭的详细分析

1.4.1 全球发射基地优化选择

class ScenarioBAnalysis:
    """场景B:仅传统火箭的详细分析"""
    
    def __init__(self):
        self.total_material = 1e8
        self.rocket_model = RocketLaunchSystemModel()
        self.selected_bases = None
        
    def optimize_base_selection(self, budget_constraint=None):
        """优化基地选择"""
        # 多目标优化:成本最小化,吞吐量最大化
        bases = self.rocket_model.launch_sites
        
        # 创建优化问题
        from scipy.optimize import differential_evolution
        
        def objective(x):
            # x是二进制向量,表示是否选择每个基地
            selected_indices = np.where(x > 0.5)[0]
            
            if len(selected_indices) == 0:
                return 1e10
            
            selected_bases = list(bases.keys())[selected_indices]
            
            # 计算总容量
            total_capacity = sum(bases[base]['capacity'] for base in selected_bases)
            
            # 计算成本
            total_cost = sum(bases[base]['cost_per_launch'] for base in selected_bases)
            
            # 目标:最小化成本/容量比
            return total_cost / total_capacity
        
        # 运行优化
        bounds = [(0, 1)] * len(bases)
        result = differential_evolution(objective, bounds, maxiter=100, popsize=20)
        
        # 解析结果
        selected_indices = np.where(result.x > 0.5)[0]
        self.selected_bases = [list(bases.keys())[i] for i in selected_indices]
        
        return {
            'selected_bases': self.selected_bases,
            'optimization_score': result.fun,
            'number_of_bases': len(self.selected_bases)
        }
    
    def detailed_launch_schedule(self, rocket_type='Falcon_Heavy_Advanced'):
        """详细发射计划"""
        if self.selected_bases is None:
            self.optimize_base_selection()
        
        # 获取发射计划
        schedule = self.rocket_model.optimize_launch_schedule(
            self.total_material, 
            self.selected_bases, 
            rocket_type
        )
        
        # 详细成本分析
        cost_analysis = self.calculate_detailed_costs(schedule)
        
        # 时间线分析
        timeline = self.create_launch_timeline(schedule)
        
        # 风险评估
        risks = self.associate_rocket_risks(schedule)
        
        return {
            'schedule': schedule,
            'cost_analysis': cost_analysis,
            'timeline': timeline,
            'risk_analysis': risks
        }
    
    def calculate_detailed_costs(self, schedule):
        """详细成本计算"""
        rocket = self.rocket_model.rocket_types[schedule['rocket_type']]
        total_launches = schedule['total_launches']
        
        # 发射成本
        launch_costs = total_launches * rocket['launch_cost']
        
        # 基础设施成本
        infrastructure_cost = len(self.selected_bases) * 5000  # 百万美元
        
        # 运营成本
        operational_cost = total_launches * 20  # 百万美元(每次发射的运营成本)
        
        # 维护成本
        maintenance_cost = schedule['years_needed'] * len(self.selected_bases) * 50
        
        total_cost = launch_costs + infrastructure_cost + operational_cost + maintenance_cost
        
        return {
            'launch_costs': launch_costs,
            'infrastructure_cost': infrastructure_cost,
            'operational_cost': operational_cost,
            'maintenance_cost': maintenance_cost,
            'total_cost': total_cost,
            'cost_per_ton': total_cost / self.total_material,
            'cost_per_launch': total_cost / total_launches
        }
    
    def create_launch_timeline(self, schedule):
        """创建发射时间线"""
        rocket = self.rocket_model.rocket_types[schedule['rocket_type']]
        total_launches = schedule['total_launches']
        years_needed = schedule['years_needed']
        
        # 计算每日发射频率
        launches_per_day = total_launches / (years_needed * 365)
        
        # 分配到各基地
        daily_schedule = {}
        total_daily_capacity = 0
        
        for base, annual_allocation in schedule['launch_allocation'].items():
            daily_launches = annual_allocation / 365
            daily_schedule[base] = {
                'daily_launches': daily_launches,
                'daily_payload': daily_launches * rocket['payload_to_moon'],
                'launch_windows': self.calculate_launch_windows(base, daily_launches)
            }
            total_daily_capacity += daily_launches * rocket['payload_to_moon']
        
        return {
            'daily_schedule': daily_schedule,
            'total_daily_capacity': total_daily_capacity,
            'launches_per_day': launches_per_day,
            'payload_per_day': launches_per_day * rocket['payload_to_moon']
        }
    
    def calculate_launch_windows(self, base, daily_launches):
        """计算发射窗口"""
        # 基于地理位置和轨道力学的发射窗口计算
        base_locations = {
            'Florida': {'lat': 28.5, 'lon': -81.0},
            'California': {'lat': 34.6, 'lon': -120.6},
            'Texas': {'lat': 31.4, 'lon': -100.5},
            # ... 其他基地
        }
        
        if base in base_locations:
            # 简化计算:每天4个主要发射窗口
            windows = [
                {'start': '00:00', 'end': '02:00', 'optimal': True},
                {'start': '06:00', 'end': '08:00', 'optimal': False},
                {'start': '12:00', 'end': '14:00', 'optimal': True},
                {'start': '18:00', 'end': '20:00', 'optimal': False}
            ]
            return windows[:int(np.ceil(daily_launches * 4))]  # 每个窗口可支持0.25次发射
        return []
    
    def associate_rocket_risks(self, schedule):
        """火箭运输风险评估"""
        total_launches = schedule['total_launches']
        
        risks = [
            {
                'risk_type': '发射失败风险',
                'description': '火箭发射过程中故障',
                'probability': 0.02,  # 2%失败率
                'expected_failures': total_launches * 0.02,
                'impact': '高(损失有效载荷和火箭)',
                'mitigation': '冗余发射,保险,改进设计'
            },
            {
                'risk_type': '天气延迟风险',
                'description': '恶劣天气导致发射延迟',
                'probability': 0.15,
                'expected_delays': total_launches * 0.15,
                'impact': '中(进度延迟)',
                'mitigation': '多个发射场,天气预测系统'
            },
            {
                'risk_type': '供应链风险',
                'description': '火箭生产或燃料供应链中断',
                'probability': 0.08,
                'impact': '高',
                'mitigation': '多个供应商,战略储备'
            },
            {
                'risk_type': '环境法规风险',
                'description': '环保法规变化限制发射频率',
                'probability': 0.05,
                'impact': '中到高',
                'mitigation': '环保技术投资,政府关系'
            }
        ]
        return risks
1.4.2 大规模火箭发射的物流挑战

class RocketLogisticsOptimization:
    """火箭物流优化"""
    
    def __init__(self, scenario_b_analysis):
        self.analysis = scenario_b_analysis
        self.schedule = None
        
    def analyze_supply_chain(self):
        """分析供应链需求"""
        # 火箭生产需求
        total_launches = self.analysis.schedule['schedule']['total_launches']
        
        supply_requirements = {
            'rockets_needed': total_launches * 1.1,  # 10%备用
            'fuel_requirements': self.calculate_fuel_needs(total_launches),
            'components': self.calculate_component_needs(total_launches),
            'workforce': self.calculate_workforce_needs(total_launches)
        }
        
        return supply_requirements
    
    def calculate_fuel_needs(self, total_launches):
        """计算燃料需求"""
        # Falcon Heavy燃料组成
        fuel_per_launch = {
            'RP-1': 400000,  # 公斤
            'LOX': 900000,   # 公斤
            'LH2': 100000,   # 公斤(二级)
        }
        
        total_fuel = {}
        for fuel, amount in fuel_per_launch.items():
            total_fuel[fuel] = amount * total_launches / 1000  # 转换为吨
        
        return total_fuel
    
    def calculate_component_needs(self, total_launches):
        """计算组件需求"""
        components = {
            'engines': total_launches * 27,  # Falcon Heavy有27个发动机
            'avionics_systems': total_launches,
            'fairings': total_launches,
            'landing_legs': total_launches * 3,  # 3个核心级
            'grid_fins': total_launches * 12
        }
        return components
    
    def calculate_workforce_needs(self, total_launches):
        """计算人力资源需求"""
        workforce = {
            'launch_team_per_launch': 150,
            'manufacturing_per_rocket': 1000,
            'logistics_per_day': 500,
            'management_and_support': 200
        }
        
        total_workforce = {}
        for role, per_unit in workforce.items():
            if 'per_launch' in role:
                total_workforce[role] = per_unit * total_launches
            elif 'per_rocket' in role:
                total_workforce[role] = per_unit * total_launches * 1.1
            elif 'per_day' in role:
                total_workforce[role] = per_unit * 365 * self.analysis.schedule['schedule']['years_needed']
            else:
                total_workforce[role] = per_unit
        
        return total_workforce
    
    def optimize_transportation_network(self):
        """优化地面运输网络"""
        # 材料运输到发射场
        material_flow = {
            'sources': ['钢铁厂', '铝厂', '复合材料厂', '电子元件厂', '燃料厂'],
            'destinations': self.analysis.selected_bases,
            'transport_modes': ['铁路', '海运', '管道', '公路']
        }
        
        # 创建运输网络模型
        network = self.create_transport_network(material_flow)
        
        # 优化运输路线
        optimized_routes = self.optimize_routes(network)
        
        return {
            'material_flow': material_flow,
            'transport_network': network,
            'optimized_routes': optimized_routes
        }
    
    def create_transport_network(self, material_flow):
        """创建运输网络模型"""
        network = {
            'nodes': [],
            'edges': [],
            'capacities': {},
            'costs': {}
        }
        
        # 添加节点
        all_locations = material_flow['sources'] + material_flow['destinations']
        for loc in all_locations:
            network['nodes'].append({
                'name': loc,
                'type': 'source' if loc in material_flow['sources'] else 'sink',
                'capacity': self.estimate_node_capacity(loc)
            })
        
        # 添加边(运输路线)
        for source in material_flow['sources']:
            for dest in material_flow['destinations']:
                for mode in material_flow['transport_modes']:
                    edge = {
                        'from': source,
                        'to': dest,
                        'mode': mode,
                        'distance': self.calculate_distance(source, dest),
                        'cost_per_ton': self.calculate_transport_cost(source, dest, mode),
                        'capacity_per_day': self.calculate_mode_capacity(mode)
                    }
                    network['edges'].append(edge)
        
        return network

1.5 场景C:混合方案的详细分析与优化

1.5.1 多目标优化模型

class ScenarioCAnalysis:
    """场景C:混合方案的详细分析"""
    
    def __init__(self):
        self.total_material = 1e8
        self.harbor_model = GalacticHarborModel()
        self.rocket_model = RocketLaunchSystemModel()
        
    def multi_objective_optimization(self):
        """多目标优化模型"""
        # 定义目标函数
        def objective(x):
            # x[0]: 太空电梯运输比例 (0-1)
            # x[1]: 使用的火箭基地数量 (0-10)
            # x[2]: 火箭类型选择 (0=Falcon, 1=Starship)
            
            harbor_ratio = x[0]
            rocket_bases = int(x[1] * 10)
            rocket_type_idx = int(round(x[2]))
            
            rocket_types = ['Falcon_Heavy_Advanced', 'Starship']
            rocket_type = rocket_types[rocket_type_idx]
            
            # 计算运输量分配
            material_by_harbor = self.total_material * harbor_ratio
            material_by_rocket = self.total_material * (1 - harbor_ratio)
            
            # 计算时间和成本
            harbor_result = self.calculate_harbor_transport(material_by_harbor)
            rocket_result = self.calculate_rocket_transport(material_by_rocket, rocket_bases, rocket_type)
            
            # 并行运输,取最大时间
            total_time = max(harbor_result['years_needed'], rocket_result['years_needed'])
            
            # 总成本
            total_cost = harbor_result['total_cost'] + rocket_result['total_cost']
            
            # 总环境影响
            total_emissions = harbor_result['co2_emissions'] + rocket_result['co2_emissions']
            
            # 多目标加权(可根据偏好调整权重)
            weight_time = 0.3
            weight_cost = 0.4
            weight_env = 0.3
            
            # 归一化
            normalized_time = total_time / 100  # 最大100年
            normalized_cost = total_cost / 1e6  # 转换为十亿美元
            normalized_env = total_emissions / 1e7  # 转换为千万吨
            
            return (weight_time * normalized_time + 
                    weight_cost * normalized_cost + 
                    weight_env * normalized_env)
        
        # 约束条件
        constraints = [
            {'type': 'ineq', 'fun': lambda x: x[0]},  # harbor_ratio >= 0
            {'type': 'ineq', 'fun': lambda x: 1 - x[0]},  # harbor_ratio <= 1
            {'type': 'ineq', 'fun': lambda x: x[1]},  # rocket_bases >= 0
            {'type': 'ineq', 'fun': lambda x: 1 - x[1]},  # rocket_bases <= 1
            {'type': 'ineq', 'fun': lambda x: x[2]},  # rocket_type >= 0
            {'type': 'ineq', 'fun': lambda x: 1 - x[2]}  # rocket_type <= 1
        ]
        
        # 初始猜测
        initial_guess = [0.5, 0.5, 0.5]
        
        # 运行优化
        from scipy.optimize import minimize
        result = minimize(objective, initial_guess, 
                         constraints=constraints,
                         method='SLSQP',
                         bounds=[(0.1, 0.9), (0.1, 0.9), (0, 1)])
        
        # 解析优化结果
        optimal_harbor_ratio = result.x[0]
        optimal_rocket_bases = int(result.x[1] * 10)
        optimal_rocket_type = 'Starship' if result.x[2] > 0.5 else 'Falcon_Heavy_Advanced'
        
        # 计算详细结果
        detailed_result = self.calculate_detailed_mix(
            optimal_harbor_ratio, 
            optimal_rocket_bases, 
            optimal_rocket_type
        )
        
        return {
            'optimal_solution': result,
            'harbor_ratio': optimal_harbor_ratio,
            'rocket_bases': optimal_rocket_bases,
            'rocket_type': optimal_rocket_type,
            'detailed_result': detailed_result
        }
    
    def calculate_harbor_transport(self, material_amount):
        """计算太空电梯运输"""
        annual_capacity = 3 * self.harbor_model.calculate_annual_capacity()
        years_needed = material_amount / annual_capacity
        
        cost = material_amount * self.harbor_model.operation_cost_per_ton
        maintenance = years_needed * 3 * self.harbor_model.maintenance_cost_per_year
        construction = 3 * self.harbor_model.construction_cost
        
        total_cost = cost + maintenance + construction
        co2_emissions = material_amount * self.harbor_model.co2_emission_per_ton
        
        return {
            'years_needed': years_needed,
            'total_cost': total_cost,
            'co2_emissions': co2_emissions,
            'annual_capacity': annual_capacity
        }
    
    def calculate_rocket_transport(self, material_amount, num_bases, rocket_type):
        """计算火箭运输"""
        # 选择最优基地
        all_bases = list(self.rocket_model.launch_sites.keys())
        selected_bases = all_bases[:num_bases]
        
        # 计算发射计划
        schedule = self.rocket_model.optimize_launch_schedule(
            material_amount, selected_bases, rocket_type
        )
        
        # 成本计算
        rocket = self.rocket_model.rocket_types[rocket_type]
        total_launches = schedule['total_launches']
        
        launch_costs = total_launches * rocket['launch_cost']
        infrastructure = num_bases * 5000
        operational = total_launches * 20
        maintenance = schedule['years_needed'] * num_bases * 50
        
        total_cost = launch_costs + infrastructure + operational + maintenance
        co2_emissions = total_launches * rocket['co2_emission']
        
        return {
            'years_needed': schedule['years_needed'],
            'total_cost': total_cost,
            'co2_emissions': co2_emissions,
            'total_launches': total_launches
        }
    
    def calculate_detailed_mix(self, harbor_ratio, rocket_bases, rocket_type):
        """计算混合方案的详细结果"""
        # 运输量分配
        material_by_harbor = self.total_material * harbor_ratio
        material_by_rocket = self.total_material * (1 - harbor_ratio)
        
        # 详细计算
        harbor_details = self.calculate_harbor_transport(material_by_harbor)
        rocket_details = self.calculate_rocket_transport(material_by_rocket, rocket_bases, rocket_type)
        
        # 总体结果
        total_time = max(harbor_details['years_needed'], rocket_details['years_needed'])
        total_cost = harbor_details['total_cost'] + rocket_details['total_cost']
        total_emissions = harbor_details['co2_emissions'] + rocket_details['co2_emissions']
        
        # 效率指标
        efficiency_metrics = {
            'cost_per_ton': total_cost / self.total_material,
            'emissions_per_ton': total_emissions / self.total_material,
            'throughput_per_year': self.total_material / total_time,
            'system_utilization': self.calculate_system_utilization(
                harbor_details, rocket_details, total_time
            )
        }
        
        return {
            'transport_allocation': {
                'harbor_tons': material_by_harbor,
                'harbor_percentage': harbor_ratio * 100,
                'rocket_tons': material_by_rocket,
                'rocket_percentage': (1 - harbor_ratio) * 100
            },
            'time_analysis': {
                'harbor_years': harbor_details['years_needed'],
                'rocket_years': rocket_details['years_needed'],
                'total_years': total_time,
                'completion_year': 2050 + total_time,
                'critical_path': 'harbor' if harbor_details['years_needed'] > rocket_details['years_needed'] else 'rocket'
            },
            'cost_analysis': {
                'harbor_cost': harbor_details['total_cost'],
                'rocket_cost': rocket_details['total_cost'],
                'total_cost': total_cost,
                'cost_breakdown_percentage': {
                    'harbor': harbor_details['total_cost'] / total_cost * 100,
                    'rocket': rocket_details['total_cost'] / total_cost * 100
                }
            },
            'environmental_impact': {
                'harbor_emissions': harbor_details['co2_emissions'],
                'rocket_emissions': rocket_details['co2_emissions'],
                'total_emissions': total_emissions,
                'emissions_reduction_vs_rocket_only': (
                    (self.total_material * 2.5 - total_emissions) / 
                    (self.total_material * 2.5) * 100
                )
            },
            'efficiency_metrics': efficiency_metrics
        }
    
    def calculate_system_utilization(self, harbor_details, rocket_details, total_time):
        """计算系统利用率"""
        harbor_capacity = harbor_details['annual_capacity']
        harbor_material = self.total_material * self.harbor_ratio if hasattr(self, 'harbor_ratio') else 0
        
        harbor_utilization = (harbor_material / harbor_capacity) / total_time if total_time > 0 else 0
        
        # 火箭利用率
        rocket_launches = rocket_details.get('total_launches', 0)
        rocket_utilization = rocket_launches / (365 * total_time) if total_time > 0 else 0
        
        return {
            'harbor_utilization': min(harbor_utilization, 1.0),
            'rocket_utilization': min(rocket_utilization, 1.0),
            'overall_utilization': (harbor_utilization + rocket_utilization) / 2
        }
1.5.2 动态调度与协同优化

class DynamicSchedulingSystem:
    """动态调度系统"""
    
    def __init__(self, mix_analysis):
        self.analysis = mix_analysis
        self.schedule = None
        
    def create_dynamic_schedule(self):
        """创建动态调度计划"""
        details = self.analysis.detailed_result
        
        # 基于材料类型和优先级进行调度
        material_categories = self.categorize_materials()
        
        # 创建时间线
        timeline = self.build_timeline(details)
        
        # 优化调度
        optimized_schedule = self.optimize_schedule(timeline, material_categories)
        
        # 风险评估与缓冲
        risk_buffer = self.add_risk_buffers(optimized_schedule)
        
        return {
            'material_categories': material_categories,
            'timeline': timeline,
            'optimized_schedule': optimized_schedule,
            'risk_buffer': risk_buffer,
            'key_performance_indicators': self.calculate_kpis(optimized_schedule)
        }
    
    def categorize_materials(self):
        """材料分类"""
        categories = {
            'heavy_infrastructure': {
                'description': '重型基础设施材料',
                'percentage': 0.40,
                'preferred_transport': 'harbor',
                'priority': 1,
                'examples': ['结构钢', '混凝土', '大型机械']
            },
            'life_support': {
                'description': '生命支持系统',
                'percentage': 0.25,
                'preferred_transport': 'mixed',
                'priority': 2,
                'examples': ['水处理系统', '空气净化器', '温室模块']
            },
            'energy_systems': {
                'description': '能源系统',
                'percentage': 0.15,
                'preferred_transport': 'harbor',
                'priority': 2,
                'examples': ['太阳能板', '核电池', '电力系统']
            },
            'habitation': {
                'description': '居住设施',
                'percentage': 0.10,
                'preferred_transport': 'mixed',
                'priority': 3,
                'examples': ['居住模块', '家具', '生活设施']
            },
            'scientific': {
                'description': '科学设备',
                'percentage': 0.05,
                'preferred_transport': 'rocket',
                'priority': 4,
                'examples': ['实验室设备', '望远镜', '探测车']
            },
            'consumables': {
                'description': '消耗品',
                'percentage': 0.05,
                'preferred_transport': 'rocket',
                'priority': 5,
                'examples': ['食品', '医疗用品', '备件']
            }
        }
        
        # 分配运输量
        total_material = self.analysis.total_material
        for category in categories.values():
            category['tonnage'] = total_material * category['percentage']
            category['harbor_allocation'] = category['tonnage'] * 0.7  # 70%通过港口
            category['rocket_allocation'] = category['tonnage'] * 0.3  # 30%通过火箭
        
        return categories
    
    def build_timeline(self, details):
        """构建时间线"""
        total_years = details['time_analysis']['total_years']
        
        timeline = {
            'phases': [],
            'milestones': [],
            'resource_allocation': {}
        }
        
        # 定义阶段
        phases = [
            {
                'name': 'Phase 1: 基础建设 (年 1-3)',
                'duration_years': 3,
                'focus': '重型基础设施',
                'harbor_load': 0.8,
                'rocket_load': 0.2
            },
            {
                'name': 'Phase 2: 系统安装 (年 4-7)',
                'duration_years': 4,
                'focus': '生命支持和能源系统',
                'harbor_load': 0.6,
                'rocket_load': 0.4
            },
            {
                'name': 'Phase 3: 居住设施 (年 8-10)',
                'duration_years': 3,
                'focus': '居住和科学设施',
                'harbor_load': 0.4,
                'rocket_load': 0.6
            },
            {
                'name': 'Phase 4: 完善运营 (年 11+)',
                'duration_years': total_years - 10,
                'focus': '消耗品和优化',
                'harbor_load': 0.3,
                'rocket_load': 0.7
            }
        ]
        
        timeline['phases'] = phases
        
        # 里程碑
        milestones = [
            {'year': 1, 'event': '首批材料到达月球'},
            {'year': 3, 'event': '基础结构完成50%'},
            {'year': 5, 'event': '生命支持系统运行'},
            {'year': 7, 'event': '首批居住设施就绪'},
            {'year': 10, 'event': '殖民地容纳10,000人'},
            {'year': total_years, 'event': '殖民地完全建成 (100,000人)'}
        ]
        
        timeline['milestones'] = milestones
        
        return timeline
    
    def optimize_schedule(self, timeline, material_categories):
        """优化调度"""
        optimized = {
            'monthly_plan': [],
            'resource_allocation': {},
            'constraints': {}
        }
        
        # 创建月度计划
        current_month = 1
        for phase in timeline['phases']:
            phase_months = phase['duration_years'] * 12
            
            for month_in_phase in range(phase_months):
                month_data = {
                    'global_month': current_month,
                    'phase': phase['name'],
                    'harbor_capacity_allocation': phase['harbor_load'],
                    'rocket_capacity_allocation': phase['rocket_load'],
                    'material_types': self.allocate_materials_by_month(
                        current_month, material_categories, phase
                    )
                }
                
                optimized['monthly_plan'].append(month_data)
                current_month += 1
        
        # 资源分配优化
        optimized['resource_allocation'] = self.optimize_resources(optimized['monthly_plan'])
        
        # 约束检查
        optimized['constraints'] = self.check_constraints(optimized['monthly_plan'])
        
        return optimized
    
    def allocate_materials_by_month(self, month, categories, phase):
        """按月分配材料"""
        # 基于阶段焦点分配材料
        focus_map = {
            '重型基础设施': ['heavy_infrastructure'],
            '生命支持和能源系统': ['life_support', 'energy_systems'],
            '居住和科学设施': ['habitation', 'scientific'],
            '消耗品和优化': ['consumables']
        }
        
        focus = phase['focus']
        relevant_categories = focus_map.get(focus, list(categories.keys()))
        
        monthly_allocation = {}
        for cat_name in relevant_categories:
            if cat_name in categories:
                cat = categories[cat_name]
                # 按月分配(简化)
                monthly_tonnage = cat['tonnage'] / (len(self.analysis.detailed_result['time_analysis']['total_years']) * 12)
                monthly_allocation[cat_name] = {
                    'tons': monthly_tonnage,
                    'transport_mode': cat['preferred_transport'],
                    'priority': cat['priority']
                }
        
        return monthly_allocation

1.6 综合比较与敏感性分析

1.6.1 三种场景的全面比较

class ComprehensiveComparison:
    """综合比较分析"""
    
    def __init__(self):
        self.scenario_a = ScenarioAAnalysis()
        self.scenario_b = ScenarioBAnalysis()
        self.scenario_c = ScenarioCAnalysis()
        
        # 运行分析
        self.results_a = self.scenario_a.detailed_transport_plan()
        self.results_b = self.scenario_b.detailed_launch_schedule()
        self.results_c = self.scenario_c.multi_objective_optimization()
    
    def create_comparison_matrix(self):
        """创建比较矩阵"""
        comparison = {
            'technical_feasibility': self.compare_technical_feasibility(),
            'economic_viability': self.compare_economics(),
            'temporal_efficiency': self.compare_timelines(),
            'environmental_impact': self.compare_environmental(),
            'risk_assessment': self.compare_risks(),
            'scalability': self.compare_scalability()
        }
        
        return comparison
    
    def compare_technical_feasibility(self):
        """比较技术可行性"""
        feasibility = {
            'scenario_a': {
                'score': 0.7,
                'strengths': ['连续运输能力', '高可靠性', '低运营复杂度'],
                'weaknesses': ['新技术风险', '高初始投资', '系绳材料挑战'],
                'technology_readiness': 6,  # TRL 6-7
                'dependencies': ['石墨烯生产', '太空制造技术']
            },
            'scenario_b': {
                'score': 0.9,
                'strengths': ['成熟技术', '已验证的可靠性', '现有基础设施'],
                'weaknesses': ['高发射频率需求', '环境影响', '发射窗口限制'],
                'technology_readiness': 9,  # TRL 9
                'dependencies': ['发射场扩建', '火箭生产产能']
            },
            'scenario_c': {
                'score': 0.8,
                'strengths': ['风险分散', '灵活性', '优化利用'],
                'weaknesses': ['系统集成复杂性', '协调挑战', '双重基础设施'],
                'technology_readiness': 7,  # 平均
                'dependencies': ['两种系统协调', '智能调度算法']
            }
        }
        return feasibility
    
    def compare_economics(self):
        """比较经济性"""
        economics = {
            'scenario_a': {
                'total_cost_billion': self.results_a['cost_breakdown']['total_cost'] / 1000,
                'cost_per_ton': self.results_a['cost_breakdown']['cost_per_ton'],
                'capital_intensity': '非常高',
                'operational_efficiency': '高',
                'economies_of_scale': '显著',
                'break_even_point': '长期运营后'
            },
            'scenario_b': {
                'total_cost_billion': self.results_b['cost_analysis']['total_cost'] / 1000,
                'cost_per_ton': self.results_b['cost_analysis']['cost_per_ton'],
                'capital_intensity': '中等',
                'operational_efficiency': '中等',
                'economies_of_scale': '有限',
                'break_even_point': '短期'
            },
            'scenario_c': {
                'total_cost_billion': self.results_c['detailed_result']['cost_analysis']['total_cost'] / 1000,
                'cost_per_ton': self.results_c['detailed_result']['cost_analysis']['total_cost'] / 1e8,
                'capital_intensity': '高',
                'operational_efficiency': '高到中等',
                'economies_of_scale': '混合',
                'break_even_point': '中期'
            }
        }
        return economics
    
    def compare_timelines(self):
        """比较时间线"""
        timelines = {
            'scenario_a': {
                'total_years': self.results_a['years_needed'],
                'completion_year': self.results_a['completion_year'],
                'critical_path': '港口建设和技术成熟',
                'schedule_risk': '中等',
                'acceleration_potential': '有限',
                'dependencies_timeline': '技术开发是关键'
            },
            'scenario_b': {
                'total_years': self.results_b['schedule']['years_needed'],
                'completion_year': 2050 + self.results_b['schedule']['years_needed'],
                'critical_path': '发射频率和生产能力',
                'schedule_risk': '低到中等',
                'acceleration_potential': '中等(通过增加发射场)',
                'dependencies_timeline': '基础设施扩建'
            },
            'scenario_c': {
                'total_years': self.results_c['detailed_result']['time_analysis']['total_years'],
                'completion_year': self.results_c['detailed_result']['time_analysis']['completion_year'],
                'critical_path': self.results_c['detailed_result']['time_analysis']['critical_path'],
                'schedule_risk': '低',
                'acceleration_potential': '高(可调整混合比例)',
                'dependencies_timeline': '系统集成和协调'
            }
        }
        return timelines
    
    def create_decision_support_dashboard(self):
        """创建决策支持仪表板"""
        dashboard = {
            'summary_metrics': self.calculate_summary_metrics(),
            'sensitivity_analysis': self.perform_comprehensive_sensitivity(),
            'recommendation_matrix': self.create_recommendation_matrix(),
            'implementation_roadmap': self.create_implementation_roadmap()
        }
        
        return dashboard
    
    def calculate_summary_metrics(self):
        """计算汇总指标"""
        metrics = {}
        
        for scenario, results in [('A', self.results_a), ('B', self.results_b), ('C', self.results_c['detailed_result'])]:
            if scenario == 'A':
                cost = results['cost_breakdown']['total_cost']
                time = results['years_needed']
                risk_score = 0.3  # 基于风险评估
            elif scenario == 'B':
                cost = results['cost_analysis']['total_cost']
                time = results['schedule']['years_needed']
                risk_score = 0.2
            else:  # C
                cost = results['cost_analysis']['total_cost']
                time = results['time_analysis']['total_years']
                risk_score = 0.25
            
            # 计算综合得分(越低越好)
            normalized_cost = cost / 1e6  # 转换为十亿美元
            normalized_time = time / 100  # 最大100年
            
            composite_score = (0.4 * normalized_cost + 
                             0.3 * normalized_time + 
                             0.3 * risk_score)
            
            metrics[f'Scenario_{scenario}'] = {
                'composite_score': composite_score,
                'cost_score': normalized_cost,
                'time_score': normalized_time,
                'risk_score': risk_score,
                'ranking': None  # 将在比较后分配
            }
        
        # 排序
        sorted_scores = sorted([(scenario, data['composite_score']) 
                               for scenario, data in metrics.items()], 
                              key=lambda x: x[1])
        
        for rank, (scenario, _) in enumerate(sorted_scores, 1):
            metrics[scenario]['ranking'] = rank
        
        return metrics
1.6.2 高级敏感性分析

class AdvancedSensitivityAnalysis:
    """高级敏感性分析"""
    
    def __init__(self, comparison):
        self.comparison = comparison
        
    def monte_carlo_simulation(self, n_simulations=1000):
        """蒙特卡洛模拟"""
        np.random.seed(42)
        
        simulation_results = {
            'scenario_a': {'costs': [], 'times': []},
            'scenario_b': {'costs': [], 'times': []},
            'scenario_c': {'costs': [], 'times': []}
        }
        
        for i in range(n_simulations):
            # 随机参数变化
            harbor_reliability = np.random.normal(0.95, 0.03)
            rocket_reliability = np.random.normal(0.98, 0.02)
            cost_variance = np.random.uniform(0.8, 1.2)
            
            # 场景A模拟
            scenario_a_cost = self.comparison.results_a['cost_breakdown']['total_cost'] * cost_variance
            scenario_a_time = self.comparison.results_a['years_needed'] / harbor_reliability
            
            simulation_results['scenario_a']['costs'].append(scenario_a_cost)
            simulation_results['scenario_a']['times'].append(scenario_a_time)
            
            # 场景B模拟
            scenario_b_cost = self.comparison.results_b['cost_analysis']['total_cost'] * cost_variance
            scenario_b_time = self.comparison.results_b['schedule']['years_needed'] / rocket_reliability
            
            simulation_results['scenario_b']['costs'].append(scenario_b_cost)
            simulation_results['scenario_b']['times'].append(scenario_b_time)
            
            # 场景C模拟(混合)
            # 使用优化后的混合比例
            optimal_ratio = self.comparison.results_c['harbor_ratio']
            harbor_part = optimal_ratio / harbor_reliability
            rocket_part = (1 - optimal_ratio) / rocket_reliability
            
            scenario_c_time = max(
                self.comparison.results_c['detailed_result']['time_analysis']['harbor_years'] / harbor_reliability,
                self.comparison.results_c['detailed_result']['time_analysis']['rocket_years'] / rocket_reliability
            )
            
            scenario_c_cost = (self.comparison.results_c['detailed_result']['cost_analysis']['harbor_cost'] * 
                             optimal_ratio * cost_variance +
                             self.comparison.results_c['detailed_result']['cost_analysis']['rocket_cost'] * 
                             (1 - optimal_ratio) * cost_variance)
            
            simulation_results['scenario_c']['costs'].append(scenario_c_cost)
            simulation_results['scenario_c']['times'].append(scenario_c_time)
        
        # 统计分析
        stats = {}
        for scenario in simulation_results:
            costs = np.array(simulation_results[scenario]['costs'])
            times = np.array(simulation_results[scenario]['times'])
            
            stats[scenario] = {
                'cost_mean': np.mean(costs),
                'cost_std': np.std(costs),
                'cost_95ci': (np.percentile(costs, 2.5), np.percentile(costs, 97.5)),
                'time_mean': np.mean(times),
                'time_std': np.std(times),
                'time_95ci': (np.percentile(times, 2.5), np.percentile(times, 97.5)),
                'probability_best_cost': self.calculate_probability_best(scenario, simulation_results, 'costs'),
                'probability_best_time': self.calculate_probability_best(scenario, simulation_results, 'times')
            }
        
        return stats
    
    def calculate_probability_best(self, target_scenario, results, metric):
        """计算成为最佳方案的概率"""
        n_simulations = len(results[list(results.keys())[0]][metric])
        best_counts = {scenario: 0 for scenario in results.keys()}
        
        for i in range(n_simulations):
            values = {scenario: results[scenario][metric][i] for scenario in results.keys()}
            best_scenario = min(values, key=values.get)  # 越小越好
            best_counts[best_scenario] += 1
        
        probability = best_counts[target_scenario] / n_simulations
        return probability
    
    def tornado_analysis(self):
        """龙卷风分析(敏感性分析)"""
        base_params = {
            'harbor_daily_capacity': 50000,
            'harbor_reliability': 0.95,
            'harbor_cost_per_ton': 0.5,
            'rocket_payload': 130,
            'rocket_reliability': 0.98,
            'rocket_cost_per_launch': 150,
            'material_requirement': 1e8
        }
        
        variations = {
            'harbor_daily_capacity': (40000, 60000),
            'harbor_reliability': (0.85, 0.99),
            'harbor_cost_per_ton': (0.3, 0.7),
            'rocket_payload': (100, 150),
            'rocket_reliability': (0.95, 0.995),
            'rocket_cost_per_launch': (100, 200),
            'material_requirement': (0.8e8, 1.2e8)
        }
        
        sensitivity_results = {}
        
        for param, (low, high) in variations.items():
            # 测试低值
            test_params_low = base_params.copy()
            test_params_low[param] = low
            
            # 测试高值
            test_params_high = base_params.copy()
            test_params_high[param] = high
            
            # 计算三种场景的结果
            results_low = self.evaluate_scenarios(test_params_low)
            results_high = self.evaluate_scenarios(test_params_high)
            
            sensitivity_results[param] = {
                'low_value': low,
                'high_value': high,
                'impact_on_scenario_a': {
                    'cost_change': (results_high['A']['cost'] - results_low['A']['cost']) / results_low['A']['cost'] * 100,
                    'time_change': (results_high['A']['time'] - results_low['A']['time']) / results_low['A']['time'] * 100
                },
                'impact_on_scenario_b': {
                    'cost_change': (results_high['B']['cost'] - results_low['B']['cost']) / results_low['B']['cost'] * 100,
                    'time_change': (results_high['B']['time'] - results_low['B']['time']) / results_low['B']['time'] * 100
                },
                'impact_on_scenario_c': {
                    'cost_change': (results_high['C']['cost'] - results_low['C']['cost']) / results_low['C']['cost'] * 100,
                    'time_change': (results_high['C']['time'] - results_low['C']['time']) / results_low['C']['time'] * 100
                }
            }
        
        return sensitivity_results
    
    def evaluate_scenarios(self, params):
        """评估场景"""
        # 场景A:仅太空电梯
        harbor_annual = 3 * 4 * params['harbor_daily_capacity'] * 365 * params['harbor_reliability']
        time_a = params['material_requirement'] / harbor_annual
        cost_a = (params['material_requirement'] * params['harbor_cost_per_ton'] + 
                 time_a * 3 * 500)  # 维护成本
        
        # 场景B:仅火箭
        launches_needed = params['material_requirement'] / params['rocket_payload']
        time_b = launches_needed / (10 * 365 / 14)  # 10个基地,14天周转
        cost_b = launches_needed * params['rocket_cost_per_launch']
        
        # 场景C:混合(优化比例)
        # 简化计算:使用70/30比例
        harbor_part = params['material_requirement'] * 0.7
        rocket_part = params['material_requirement'] * 0.3
        
        time_harbor = harbor_part / harbor_annual
        time_rocket = rocket_part / (params['rocket_payload'] * 10 * 365 / 14)
        time_c = max(time_harbor, time_rocket)
        
        cost_c = (harbor_part * params['harbor_cost_per_ton'] + 
                 rocket_part / params['rocket_payload'] * params['rocket_cost_per_launch'])
        
        return {
            'A': {'cost': cost_a, 'time': time_a},
            'B': {'cost': cost_b, 'time': time_b},
            'C': {'cost': cost_c, 'time': time_c}
        }

1.7 代码执行与结果分析

def main_analysis():
    """主分析函数"""
    print("=" * 80)
    print("月球殖民地运输方案详细分析 - 问题1")
    print("=" * 80)
    
    # 1. 初始化各场景分析
    print("\n1. 初始化分析模型...")
    
    scenario_a = ScenarioAAnalysis()
    scenario_b = ScenarioBAnalysis()
    scenario_c = ScenarioCAnalysis()
    
    # 2. 运行详细分析
    print("\n2. 运行场景A分析(仅太空电梯)...")
    results_a = scenario_a.detailed_transport_plan()
    
    print("\n3. 运行场景B分析(仅传统火箭)...")
    base_selection = scenario_b.optimize_base_selection()
    results_b = scenario_b.detailed_launch_schedule()
    
    print("\n4. 运行场景C分析(混合方案)...")
    results_c = scenario_c.multi_objective_optimization()
    
    # 3. 综合比较
    print("\n5. 进行综合比较分析...")
    comparison = ComprehensiveComparison()
    comparison_matrix = comparison.create_comparison_matrix()
    
    # 4. 敏感性分析
    print("\n6. 运行高级敏感性分析...")
    sensitivity = AdvancedSensitivityAnalysis(comparison)
    mc_results = sensitivity.monte_carlo_simulation(n_simulations=500)
    tornado_results = sensitivity.tornado_analysis()
    
    # 5. 输出结果
    print("\n" + "=" * 80)
    print("分析结果摘要")
    print("=" * 80)
    
    print(f"\n场景A(仅太空电梯):")
    print(f"  所需时间: {results_a['years_needed']:.1f} 年")
    print(f"  总成本: ${results_a['cost_breakdown']['total_cost']/1000:.1f} 十亿美元")
    print(f"  完成年份: {results_a['completion_year']:.0f}")
    
    print(f"\n场景B(仅传统火箭):")
    print(f"  所需时间: {results_b['schedule']['years_needed']:.1f} 年")
    print(f"  总成本: ${results_b['cost_analysis']['total_cost']/1000:.1f} 十亿美元")
    print(f"  使用基地: {', '.join(scenario_b.selected_bases)}")
    
    print(f"\n场景C(优化混合方案):")
    print(f"  太空电梯比例: {results_c['harbor_ratio']*100:.1f}%")
    print(f"  所需时间: {results_c['detailed_result']['time_analysis']['total_years']:.1f} 年")
    print(f"  总成本: ${results_c['detailed_result']['cost_analysis']['total_cost']/1000:.1f} 十亿美元")
    print(f"  CO2减排(相比纯火箭): {results_c['detailed_result']['environmental_impact']['emissions_reduction_vs_rocket_only']:.1f}%")
    
    # 6. 推荐方案
    print("\n" + "=" * 80)
    print("推荐方案")
    print("=" * 80)
    
    # 基于多准则决策分析
    scores = comparison.calculate_summary_metrics()
    
    best_scenario = min(scores.items(), key=lambda x: x[1]['composite_score'])[0]
    
    print(f"\n基于综合分析,推荐方案: {best_scenario}")
    print(f"综合得分: {scores[best_scenario]['composite_score']:.3f}")
    
    if best_scenario == 'Scenario_C':
        print("\n推荐采用混合方案,具体配置:")
        print(f"  • 太空电梯承担: {results_c['harbor_ratio']*100:.1f}% 的运输")
        print(f"  • 传统火箭承担: {(1-results_c['harbor_ratio'])*100:.1f}% 的运输")
        print(f"  • 使用火箭类型: {results_c['rocket_type']}")
        print(f"  • 使用火箭基地数量: {results_c['rocket_bases']}")
        
        # 实施建议
        print("\n实施建议:")
        print("  1. 第一阶段(2050-2060): 主要建设太空电梯系统")
        print("  2. 第二阶段(2060-2080): 混合运输,优先重型材料通过电梯")
        print("  3. 第三阶段(2080-2100): 优化调度,增加人员运输")
        print("  4. 运营阶段(2100后): 定期补给和维护")
    
    # 7. 生成详细报告
    print("\n" + "=" * 80)
    print("生成详细分析报告...")
    
    generate_detailed_report(results_a, results_b, results_c, comparison_matrix, 
                            mc_results, tornado_results, scores)
    
    print("分析完成!详细结果已保存到文件。")

def generate_detailed_report(results_a, results_b, results_c, comparison, 
                            mc_results, tornado_results, scores):
    """生成详细报告"""
    timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
    filename = f"moon_colony_transport_analysis_{timestamp}.txt"
    
    with open(filename, 'w', encoding='utf-8') as f:
        f.write("月球殖民地运输方案详细分析报告\n")
        f.write("=" * 80 + "\n\n")
        
        f.write("1. 执行摘要\n")
        f.write("-" * 40 + "\n")
        f.write(f"分析时间: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}\n")
        f.write(f"总材料需求: {1e8:,.0f} 吨\n")
        f.write(f"目标人口: 100,000人\n")
        f.write(f"起始年份: 2050\n\n")
        
        f.write("2. 各场景详细分析\n")
        f.write("-" * 40 + "\n")
        
        # 场景A
        f.write("\n2.1 场景A: 仅太空电梯\n")
        f.write(f"   年运输能力: {results_a['annual_capacity_tons']:,.0f} 吨/年\n")
        f.write(f"   所需时间: {results_a['years_needed']:.1f} 年\n")
        f.write(f"   总成本: ${results_a['cost_breakdown']['total_cost']/1000:.2f} 十亿美元\n")
        f.write(f"   成本细分:\n")
        for cost_type, amount in results_a['cost_breakdown'].items():
            if cost_type != 'total_cost':
                f.write(f"     - {cost_type}: ${amount/1000:.2f} 十亿美元\n")
        
        # 场景B
        f.write("\n2.2 场景B: 仅传统火箭\n")
        f.write(f"   使用基地: {', '.join(list(results_b['schedule']['launch_allocation'].keys()))}\n")
        f.write(f"   总发射次数: {results_b['schedule']['total_launches']:,.0f}\n")
        f.write(f"   所需时间: {results_b['schedule']['years_needed']:.1f} 年\n")
        f.write(f"   总成本: ${results_b['cost_analysis']['total_cost']/1000:.2f} 十亿美元\n")
        
        # 场景C
        f.write("\n2.3 场景C: 混合方案\n")
        f.write(f"   优化后的太空电梯比例: {results_c['harbor_ratio']*100:.1f}%\n")
        f.write(f"   所需时间: {results_c['detailed_result']['time_analysis']['total_years']:.1f} 年\n")
        f.write(f"   总成本: ${results_c['detailed_result']['cost_analysis']['total_cost']/1000:.2f} 十亿美元\n")
        f.write(f"   CO2减排: {results_c['detailed_result']['environmental_impact']['emissions_reduction_vs_rocket_only']:.1f}%\n")
        
        f.write("\n3. 综合比较\n")
        f.write("-" * 40 + "\n")
        
        for metric, data in comparison.items():
            f.write(f"\n3.{list(comparison.keys()).index(metric)+1} {metric.replace('_', ' ').title()}\n")
            for scenario, details in data.items():
                f.write(f"   {scenario}:\n")
                if isinstance(details, dict):
                    for key, value in details.items():
                        if isinstance(value, (int, float)):
                            f.write(f"     {key}: {value}\n")
                        elif isinstance(value, list):
                            f.write(f"     {key}: {', '.join(str(v) for v in value[:3])}...\n")
                else:
                    f.write(f"     {details}\n")
        
        f.write("\n4. 敏感性分析结果\n")
        f.write("-" * 40 + "\n")
        
        f.write("\n4.1 蒙特卡洛模拟结果\n")
        for scenario, stats in mc_results.items():
            f.write(f"\n   {scenario}:\n")
            f.write(f"     成本均值: ${stats['cost_mean']/1000:.2f} 十亿美元\n")
            f.write(f"     成本95%置信区间: [${stats['cost_95ci'][0]/1000:.2f}, ${stats['cost_95ci'][1]/1000:.2f}] 十亿美元\n")
            f.write(f"     时间均值: {stats['time_mean']:.1f} 年\n")
            f.write(f"     成为最佳成本方案概率: {stats['probability_best_cost']*100:.1f}%\n")
        
        f.write("\n4.2 关键参数敏感性(龙卷风分析)\n")
        for param, impacts in tornado_results.items():
            f.write(f"\n   {param}:\n")
            for scenario in ['A', 'B', 'C']:
                cost_impact = impacts[f'impact_on_scenario_{scenario.lower()}']['cost_change']
                time_impact = impacts[f'impact_on_scenario_{scenario.lower()}']['time_change']
                f.write(f"     场景{scenario}: 成本影响{ cost_impact:+.1f}%, 时间影响{ time_impact:+.1f}%\n")
        
        f.write("\n5. 最终推荐\n")
        f.write("-" * 40 + "\n")
        
        best_scenario = min(scores.items(), key=lambda x: x[1]['composite_score'])[0]
        f.write(f"\n基于多准则决策分析,推荐方案: {best_scenario}\n")
        f.write(f"综合得分: {scores[best_scenario]['composite_score']:.3f}\n\n")
        
        f.write("推荐理由:\n")
        f.write("1. 技术可行性: 混合方案分散了技术风险\n")
        f.write("2. 经济性: 在长期运营中成本效益最优\n")
        f.write("3. 时间效率: 通过并行运输缩短总时间\n")
        f.write("4. 环境影响: 显著减少CO2排放\n")
        f.write("5. 灵活性: 可根据实际情况调整混合比例\n")
        
        f.write("\n" + "=" * 80 + "\n")
        f.write("报告结束\n")
    
    print(f"详细报告已保存到: {filename}")

# 执行主分析
if __name__ == "__main__":
    main_analysis()

二、问题1分析的关键见解

2.1 技术可行性分析

2.1.1 太空电梯系统的技术挑战
  1. 材料科学挑战:需要100,000公里长的石墨烯系绳,目前最大生产长度有限

  2. 动力学稳定性:系绳摆动、轨道共振、太空碎片碰撞风险

  3. 能源需求:巨大的电能需求,需要太空太阳能或地面无线输电

  4. 维护复杂性:在轨维修的难度和成本

2.1.2 火箭系统的可扩展性限制
  1. 发射频率上限:物理限制(发射场数量、天气窗口、安全间隔)

  2. 生产成本:大规模生产火箭的经济性和供应链挑战

  3. 环境影响:高频次发射对大气和局部生态的影响

  4. 人力资源:需要大量训练有素的技术人员

2.2 经济性深度分析

2.2.1 成本结构比较

# 成本结构分析代码
def analyze_cost_structures():
    """深度成本结构分析"""
    
    # 太空电梯的固定成本高,可变成本低
    harbor_cost_structure = {
        'fixed_costs': {
            '研发': 50000,  # 百万美元
            '建设': 600000,  # 3个港口
            '初始部署': 200000
        },
        'variable_costs_per_ton': {
            '能源': 0.1,
            '维护': 0.05,
            '运营': 0.15,
            '人工': 0.1
        }
    }
    
    # 火箭的可变成本高
    rocket_cost_structure = {
        'fixed_costs': {
            '发射场升级': 5000,  # 每个基地
            '生产设施': 10000
        },
        'variable_costs_per_launch': {
            '火箭制造成本': 80,  # 百万美元
            '燃料': 5,
            '运营': 10,
            '保险': 5
        }
    }
    
    # 计算盈亏平衡点
    def calculate_break_even(total_material):
        harbor_total_fixed = sum(harbor_cost_structure['fixed_costs'].values())
        harbor_variable_per_ton = sum(harbor_cost_structure['variable_costs_per_ton'].values())
        
        rocket_total_fixed = sum(rocket_cost_structure['fixed_costs'].values()) * 5  # 5个基地
        rocket_variable_per_ton = 100  # 每吨火箭运输成本(估计)
        
        # 计算不同运输量下的成本
        quantities = np.linspace(1e7, 2e8, 20)
        harbor_costs = harbor_total_fixed + quantities * harbor_variable_per_ton
        rocket_costs = rocket_total_fixed + quantities * rocket_variable_per_ton
        
        # 找到盈亏平衡点
        diff = harbor_costs - rocket_costs
        break_even_idx = np.where(np.diff(np.sign(diff)))[0]
        
        return {
            'quantities': quantities,
            'harbor_costs': harbor_costs,
            'rocket_costs': rocket_costs,
            'break_even_points': quantities[break_even_idx] if len(break_even_idx) > 0 else []
        }
    
    return calculate_break_even(1e8)

2.3 时间效率优化策略

2.3.1 并行运输优化

class ParallelTransportOptimizer:
    """并行运输优化"""
    
    def optimize_parallel_schedule(self, material_categories, transport_capacities):
        """优化并行运输计划"""
        
        # 使用线性规划优化
        from scipy.optimize import linprog
        
        # 决策变量:每种材料通过每种运输方式的数量
        n_materials = len(material_categories)
        n_transport = 2  # 港口和火箭
        
        # 目标:最小化总时间(近似为最大化吞吐量)
        c = [-1] * n_materials * n_transport  # 最大化运输量
        
        # 约束:总材料需求
        A_eq = []
        b_eq = []
        
        for i in range(n_materials):
            row = [0] * (n_materials * n_transport)
            row[i * n_transport] = 1  # 港口
            row[i * n_transport + 1] = 1  # 火箭
            A_eq.append(row)
            b_eq.append(material_categories[i]['tonnage'])
        
        # 运输能力约束
        A_ub = []
        b_ub = []
        
        # 港口容量约束
        harbor_row = [0] * (n_materials * n_transport)
        for i in range(n_materials):
            harbor_row[i * n_transport] = 1  # 只计数港口运输
        A_ub.append(harbor_row)
        b_ub.append(transport_capacities['harbor_annual'])
        
        # 火箭容量约束
        rocket_row = [0] * (n_materials * n_transport)
        for i in range(n_materials):
            rocket_row[i * n_transport + 1] = 1  # 只计数火箭运输
        A_ub.append(rocket_row)
        b_ub.append(transport_capacities['rocket_annual'])
        
        # 边界
        bounds = [(0, None)] * (n_materials * n_transport)
        
        # 求解
        result = linprog(c, A_ub=A_ub, b_ub=b_ub, A_eq=A_eq, b_eq=b_eq, bounds=bounds)
        
        return result

2.4 风险管理框架

2.4.1 风险量化模型

class RiskQuantificationModel:
    """风险量化模型"""
    
    def quantify_transport_risks(self, scenario_results):
        """量化运输风险"""
        
        risk_factors = {
            'technical': {
                'harbor': {
                    'tether_failure': {'probability': 0.001, 'impact': 1.0},
                    'power_outage': {'probability': 0.01, 'impact': 0.3},
                    'mechanical_failure': {'probability': 0.05, 'impact': 0.5}
                },
                'rocket': {
                    'launch_failure': {'probability': 0.02, 'impact': 0.8},
                    'weather_delay': {'probability': 0.1, 'impact': 0.2},
                    'supply_chain_disruption': {'probability': 0.05, 'impact': 0.4}
                }
            },
            'operational': {
                'harbor': {
                    'maintenance_downtime': {'probability': 0.1, 'impact': 0.2},
                    'staffing_issues': {'probability': 0.05, 'impact': 0.1}
                },
                'rocket': {
                    'range_safety_violation': {'probability': 0.01, 'impact': 0.5},
                    'regulatory_delay': {'probability': 0.03, 'impact': 0.3}
                }
            },
            'external': {
                'both': {
                    'solar_storm': {'probability': 0.005, 'impact': 0.7},
                    'space_debris': {'probability': 0.002, 'impact': 0.9},
                    'political_instability': {'probability': 0.02, 'impact': 0.4}
                }
            }
        }
        
        # 计算各场景的风险指数
        risk_indices = {}
        
        for scenario_name, results in scenario_results.items():
            total_risk = 0
            
            if 'harbor' in scenario_name.lower() or '混合' in scenario_name:
                # 计算太空电梯风险
                harbor_risk = 0
                for category, risks in risk_factors['technical']['harbor'].items():
                    harbor_risk += risks['probability'] * risks['impact']
                
                for category, risks in risk_factors['operational']['harbor'].items():
                    harbor_risk += risks['probability'] * risks['impact']
            
            if 'rocket' in scenario_name.lower() or '混合' in scenario_name:
                # 计算火箭风险
                rocket_risk = 0
                for category, risks in risk_factors['technical']['rocket'].items():
                    rocket_risk += risks['probability'] * risks['impact']
                
                for category, risks in risk_factors['operational']['rocket'].items():
                    rocket_risk += risks['probability'] * risks['impact']
            
            # 外部风险(共同)
            external_risk = 0
            for category, risks in risk_factors['external']['both'].items():
                external_risk += risks['probability'] * risks['impact']
            
            # 加权总风险
            if '仅太空电梯' in scenario_name:
                total_risk = harbor_risk + external_risk
            elif '仅传统火箭' in scenario_name:
                total_risk = rocket_risk + external_risk
            else:  # 混合方案
                # 使用混合比例加权
                harbor_ratio = results.get('harbor_ratio', 0.5)
                total_risk = (harbor_ratio * harbor_risk + 
                            (1 - harbor_ratio) * rocket_risk + 
                            external_risk)
            
            risk_indices[scenario_name] = {
                'total_risk_index': total_risk,
                'components': {
                    'harbor_risk': harbor_risk if 'harbor' in scenario_name.lower() or '混合' in scenario_name else 0,
                    'rocket_risk': rocket_risk if 'rocket' in scenario_name.lower() or '混合' in scenario_name else 0,
                    'external_risk': external_risk
                }
            }
        
        return risk_indices

三、结论与建议

3.1 主要发现

  1. 技术可行性:三种方案在技术上都是可行的,但挑战不同

  2. 经济性:混合方案在长期视角下最具成本效益

  3. 时间效率:并行运输可以显著缩短总建设时间

  4. 环境影响:太空电梯的环境优势明显,混合方案可平衡需求

  5. 风险分散:混合方案提供了天然的风险分散机制

3.2 推荐实施方案

基于全面分析,我们推荐采用动态混合方案

第一阶段(2050-2065)

  • 主要依赖传统火箭运输

  • 同步建设太空电梯系统

  • 运输优先级:基础设施和建设设备

第二阶段(2065-2085)

  • 太空电梯承担60-70%运输

  • 火箭承担剩余部分

  • 重点:生命支持系统和居住模块

第三阶段(2085-2100)

  • 优化运输比例至70/30(电梯/火箭)

  • 增加人员运输频率

  • 建立定期补给体系

Logo

有“AI”的1024 = 2048,欢迎大家加入2048 AI社区

更多推荐