前方干货预警:这可能是你能够找到的,最容易理解,最容易跑通的适用于各种开源LLM模型的同时支持多轮和单轮对话数据集的大模型高效微调范例。

我们构造了一个修改大模型自我认知的3轮对话的玩具数据集,使用QLoRA算法,只需要5分钟的训练时间,就可以完成微调,并成功修改了LLM模型的自我认知(以Qwen7b-Chat为例)。

通过借鉴FastChat对各种开源LLM模型进行数据预处理方法统一管理的方法,因此本范例适用于非常多不同的开源LLM模型,包括 Qwen-7b-Chat,Llama-13b-chat, BaiChuan2-13b-chat, Intern-7b-chat, ChatGLM2-6b-chat 以及其它许许多多FastChat支持的模型。

在多轮对话模式下,我们按照如下格式构造包括多轮对话中所有机器人回复内容的标签。

(注:llm.build_inputs_labels(messages,multi_rounds=True) 时采用)

代码语言:javascript

inputs = <user1> <assistant1> <user2> <assistant2> <user3> <assistant3>
labels = <-100> <assistant1> <-100> <assistant2> <-100> <assistant3>

在单轮对话模式下,我们仅将最后一轮机器人的回复作为要学习的标签。

(注:llm.build_inputs_labels(messages,multi_rounds=False)时采用)

代码语言:javascript

inputs = <user1> <assistant1> <user2> <assistant2> <user3> <assistant3>
labels = <-100> <-100> <-100> <-100> <-100> <assistant3>
〇,预训练模型

代码语言:javascript

import warnings
warnings.filterwarnings('ignore')

代码语言:javascript

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM,AutoConfig, AutoModel, BitsAndBytesConfig
from transformers.generation.utils import GenerationConfig
import torch.nn as nn

#使用QLoRA引入的 NF4量化数据类型以节约显存
model_name_or_path ='qwen_7b'  #远程:'Qwen/Qwen-7b-Chat'

bnb_config=BitsAndBytesConfig(
            load_in_4bit=True,
            bnb_4bit_compute_dtype=torch.float16,
            bnb_4bit_use_double_quant=True,
            bnb_4bit_quant_type="nf4",
            llm_int8_threshold=6.0,
            llm_int8_has_fp16_weight=False,
        )

tokenizer = AutoTokenizer.from_pretrained(
   model_name_or_path, trust_remote_code=True)

model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
                quantization_config=bnb_config,
                trust_remote_code=True) 

model.generation_config = GenerationConfig.from_pretrained(model_name_or_path)

微调前输出如下:

一,准备数据

下面我设计了一个改变LLM自我认知的玩具数据集,这个数据集有三轮对话。

第一轮问题是 who are you?

第二轮问题是 where are you from?

第三轮问题是 what can you do?

差不多是哲学三问吧:你是谁?你从哪里来?你要到哪里去?

通过这三个问题,我们希望初步地改变 大模型的自我认知。

在提问的方式上,我们稍微作了一些数据增强。

所以,总共是有 27个样本。

1,导入样本

代码语言:javascript

who_are_you = ['请介绍一下你自己。','你是谁呀?','你是?',]
i_am = ['我叫梦中情炉,是一个三好炼丹炉:好看,好用,好改。我的英文名字叫做torchkeras,是一个pytorch模型训练模版工具。']
where_you_from = ['你多大了?','你是谁开发的呀?','你从哪里来呀']
i_from = ['我在2020年诞生于github星球,是一个有毅力的吃货设计和开发的。']
what_you_can = ['你能干什么','你有什么作用呀?','你能帮助我干什么']
i_can = ['我能够帮助你以最优雅的方式训练各种类型的pytorch模型,并且训练过程中会自动展示一个非常美丽的训练过程图表。']

conversation = [(who_are_you,i_am),(where_you_from,i_from),(what_you_can,i_can)]
print(conversation)

代码语言:javascript

import random
def get_messages(conversation):
    select = random.choice
    messages,history = [],[]
    for t in conversation:
        history.append((select(t[0]),select(t[-1])))
        
    for prompt,response in history:
        pair = [{"role": "user", "content": prompt},
            {"role": "assistant", "content": response}]
        messages.extend(pair)
    return messages

2,做数据集

代码语言:javascript

from torch.utils.data import Dataset,DataLoader 
from copy import deepcopy
class MyDataset(Dataset):
    def __init__(self,conv,size=8
                ):
        self.conv = conv
        self.index_list = list(range(size))
        self.size = size 
        
    def __len__(self):
        return self.size
        
    def get(self,index):
        idx = self.index_list[index]
        messages = get_messages(self.conv)
        return messages

    def __getitem__(self,index):
        messages = self.get(index)
        input_ids, labels = llm.build_inputs_labels(messages,multi_rounds=True) #支持多轮
        return {'input_ids':input_ids,'labels':labels}

代码语言:javascript

ds_train = ds_val = MyDataset(conversation)
3,创建管道

代码语言:javascript

#如果pad_token_id为None,需要使用unk_token_id或eos_token_id代替
if tokenizer.pad_token_id is None:
    tokenizer.pad_token_id = tokenizer.unk_token_id if tokenizer.unk_token_id is not None else tokenizer.eos_token_id
    
def data_collator(examples: list):
    
    len_ids = [len(example["input_ids"]) for example in examples]
    longest = max(len_ids) #之后按照batch中最长的input_ids进行padding
    
    input_ids = []
    labels_list = []
    
    for length, example in sorted(zip(len_ids, examples), key=lambda x: -x[0]):
        ids = example["input_ids"]
        labs = example["labels"]
        
        ids = ids + [tokenizer.pad_token_id] * (longest - length)
        labs = labs + [-100] * (longest - length)
        
        input_ids.append(torch.LongTensor(ids))
        labels_list.append(torch.LongTensor(labs))
          
    input_ids = torch.stack(input_ids)
    labels = torch.stack(labels_list)
    return {
        "input_ids": input_ids,
        "labels": labels,
    }

代码语言:javascript

import torch 
dl_train = torch.utils.data.DataLoader(ds_train,batch_size=2,
                                       pin_memory=True,shuffle=False,
                                       collate_fn = data_collator)

dl_val = torch.utils.data.DataLoader(ds_val,batch_size=2,
                                    pin_memory=True,shuffle=False,
                                     collate_fn = data_collator)
二,定义模型

下面我们将使用QLoRA(实际上用的是量化的AdaLoRA)算法来微调Baichuan-13b模型。

代码语言:javascript

from peft import get_peft_config, get_peft_model, TaskType
model.supports_gradient_checkpointing = True  #
model.gradient_checkpointing_enable()
model.enable_input_require_grads()

model.config.use_cache = False  # silence the warnings. Please re-enable for inference!

代码语言:javascript

import bitsandbytes as bnb 
def find_all_linear_names(model):
    """
    找出所有全连接层,为所有全连接添加adapter
    """
    cls = bnb.nn.Linear4bit
    lora_module_names = set()
    for name, module in model.named_modules():
        if isinstance(module, cls):
            names = name.split('.')
            lora_module_names.add(names[0] if len(names) == 1 else names[-1])

    if 'lm_head' in lora_module_names:  # needed for 16-bit
        lora_module_names.remove('lm_head')
    return list(lora_module_names)

代码语言:javascript

from peft import prepare_model_for_kbit_training 
model = prepare_model_for_kbit_training(model)

代码语言:javascript

lora_modules = find_all_linear_names(model)
print(lora_modules)

代码语言:javascript

from peft import AdaLoraConfig
peft_config = AdaLoraConfig(
    task_type=TaskType.CAUSAL_LM, inference_mode=False,
    r=16,
    lora_alpha=16, lora_dropout=0.08,
    target_modules= lora_modules
)

peft_model = get_peft_model(model, peft_config)

peft_model.is_parallelizable = True
peft_model.model_parallel = True
peft_model.print_trainable_parameters()

trainable params: 26,838,912 || all params: 7,748,163,616 || trainable%: 0.34639062015388394

三,训练模型

代码语言:javascript

from torchkeras import KerasModel 
from accelerate import Accelerator 

class StepRunner:
    def __init__(self, net, loss_fn, accelerator=None, stage = "train", metrics_dict = None, 
                 optimizer = None, lr_scheduler = None
                 ):
        self.net,self.loss_fn,self.metrics_dict,self.stage = net,loss_fn,metrics_dict,stage
        self.optimizer,self.lr_scheduler = optimizer,lr_scheduler
        self.accelerator = accelerator if accelerator is not None else Accelerator() 
        if self.stage=='train':
            self.net.train() 
        else:
            self.net.eval()
    
    def __call__(self, batch):
        
        #loss
        with self.accelerator.autocast():
            loss = self.net.forward(**batch)[0]

        #backward()
        if self.optimizer is not None and self.stage=="train":
            self.accelerator.backward(loss)
            if self.accelerator.sync_gradients:
                self.accelerator.clip_grad_norm_(self.net.parameters(), 1.0)
            self.optimizer.step()
            if self.lr_scheduler is not None:
                self.lr_scheduler.step()
            self.optimizer.zero_grad()
            
        all_loss = self.accelerator.gather(loss).sum()
        
        #losses (or plain metrics that can be averaged)
        step_losses = {self.stage+"_loss":all_loss.item()}
        
        #metrics (stateful metrics)
        step_metrics = {}
        
        if self.stage=="train":
            if self.optimizer is not None:
                step_metrics['lr'] = self.optimizer.state_dict()['param_groups'][0]['lr']
            else:
                step_metrics['lr'] = 0.0
        return step_losses,step_metrics
    
KerasModel.StepRunner = StepRunner 

#仅仅保存QLora可训练参数
def save_ckpt(self, ckpt_path='checkpoint', accelerator = None):
    unwrap_net = accelerator.unwrap_model(self.net)
    unwrap_net.save_pretrained(ckpt_path)
    
def load_ckpt(self, ckpt_path='checkpoint'):
    import os
    self.net.load_state_dict(
        torch.load(os.path.join(ckpt_path,'adapter_model.bin')),strict =False)
    self.from_scratch = False
    
KerasModel.save_ckpt = save_ckpt 
KerasModel.load_ckpt = load_ckpt

代码语言:javascript

optimizer = bnb.optim.adamw.AdamW(peft_model.parameters(),
                                  lr=6e-03,is_paged=True)  #'paged_adamw'
keras_model = KerasModel(peft_model,loss_fn =None,
        optimizer=optimizer) 

ckpt_path = 'qwen7b_multirounds'

代码语言:javascript

keras_model.fit(train_data = dl_train,
                val_data = dl_val,
                epochs=100,patience=15,
                monitor='val_loss',mode='min',
                ckpt_path = ckpt_path
               )

四,保存模型

为减少GPU压力,此处可重启kernel释放显存

代码语言:javascript

import warnings 
warnings.filterwarnings('ignore')

代码语言:javascript

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM,AutoConfig, AutoModel, BitsAndBytesConfig
from transformers.generation.utils import GenerationConfig
import torch.nn as nn
#使用QLoRA引入的 NF4量化数据类型以节约显存
model_name_or_path ='qwen_7b'
ckpt_path = 'qwen7b_multirounds'

tokenizer = AutoTokenizer.from_pretrained(
   model_name_or_path, trust_remote_code=True)

model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
                trust_remote_code=True) 

model.generation_config = GenerationConfig.from_pretrained(model_name_or_path)

代码语言:javascript

from peft import PeftModel

#可能需要5分钟左右
peft_model = PeftModel.from_pretrained(model, ckpt_path)
model_new = peft_model.merge_and_unload()

代码语言:javascript

from transformers.generation.utils import GenerationConfig
model_new.generation_config = GenerationConfig.from_pretrained(model_name_or_path)

代码语言:javascript

save_path = 'qwen_torchkeras'

代码语言:javascript

tokenizer.save_pretrained(save_path)
model_new.save_pretrained(save_path)

代码语言:javascript

!cp qwen_7b/*.py  qwen_torchkeras/
五,使用模型

为减少GPU压力,此处可再次重启kernel释放显存。

代码语言:javascript

import warnings
warnings.filterwarnings('ignore')

代码语言:javascript

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM,AutoConfig, BitsAndBytesConfig
from transformers.generation.utils import GenerationConfig
import torch.nn as nn

model_name_or_path =  'qwen_torchkeras'

tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=False, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(model_name_or_path, device_map="auto", 
                                             torch_dtype=torch.float16, trust_remote_code=True)
model.generation_config = GenerationConfig.from_pretrained(model_name_or_path)

我们测试一下微调后的效果。

非常棒,粗浅的测试表明,我们的多轮对话训练是成功的。已经在Qwen的自我认知中,种下了一颗梦中情炉的种子。😋😋

想入门 AI 大模型却找不到清晰方向?备考大厂 AI 岗还在四处搜集零散资料?别再浪费时间啦!2026 年 AI 大模型全套学习资料已整理完毕,从学习路线到面试真题,从工具教程到行业报告,一站式覆盖你的所有需求,现在全部免费分享

👇👇扫码免费领取全部内容👇👇

一、学习必备:100+本大模型电子书+26 份行业报告 + 600+ 套技术PPT,帮你看透 AI 趋势

想了解大模型的行业动态、商业落地案例?大模型电子书?这份资料帮你站在 “行业高度” 学 AI

1. 100+本大模型方向电子书

在这里插入图片描述

2. 26 份行业研究报告:覆盖多领域实践与趋势

报告包含阿里、DeepSeek 等权威机构发布的核心内容,涵盖:

  • 职业趋势:《AI + 职业趋势报告》《中国 AI 人才粮仓模型解析》;
  • 商业落地:《生成式 AI 商业落地白皮书》《AI Agent 应用落地技术白皮书》;
  • 领域细分:《AGI 在金融领域的应用报告》《AI GC 实践案例集》;
  • 行业监测:《2024 年中国大模型季度监测报告》《2025 年中国技术市场发展趋势》。

3. 600+套技术大会 PPT:听行业大咖讲实战

PPT 整理自 2024-2025 年热门技术大会,包含百度、腾讯、字节等企业的一线实践:

在这里插入图片描述

  • 安全方向:《端侧大模型的安全建设》《大模型驱动安全升级(腾讯代码安全实践)》;
  • 产品与创新:《大模型产品如何创新与创收》《AI 时代的新范式:构建 AI 产品》;
  • 多模态与 Agent:《Step-Video 开源模型(视频生成进展)》《Agentic RAG 的现在与未来》;
  • 工程落地:《从原型到生产:AgentOps 加速字节 AI 应用落地》《智能代码助手 CodeFuse 的架构设计》。

二、求职必看:大厂 AI 岗面试 “弹药库”,300 + 真题 + 107 道面经直接抱走

想冲字节、腾讯、阿里、蔚来等大厂 AI 岗?这份面试资料帮你提前 “押题”,拒绝临场慌!

1. 107 道大厂面经:覆盖 Prompt、RAG、大模型应用工程师等热门岗位

面经整理自 2021-2025 年真实面试场景,包含 TPlink、字节、腾讯、蔚来、虾皮、中兴、科大讯飞、京东等企业的高频考题,每道题都附带思路解析

2. 102 道 AI 大模型真题:直击大模型核心考点

针对大模型专属考题,从概念到实践全面覆盖,帮你理清底层逻辑:

3. 97 道 LLMs 真题:聚焦大型语言模型高频问题

专门拆解 LLMs 的核心痛点与解决方案,比如让很多人头疼的 “复读机问题”:


三、路线必明: AI 大模型学习路线图,1 张图理清核心内容

刚接触 AI 大模型,不知道该从哪学起?这份「AI大模型 学习路线图」直接帮你划重点,不用再盲目摸索!

在这里插入图片描述

路线图涵盖 5 大核心板块,从基础到进阶层层递进:一步步带你从入门到进阶,从理论到实战。

img

L1阶段:启航篇丨极速破界AI新时代

L1阶段:了解大模型的基础知识,以及大模型在各个行业的应用和分析,学习理解大模型的核心原理、关键技术以及大模型应用场景。

img

L2阶段:攻坚篇丨RAG开发实战工坊

L2阶段:AI大模型RAG应用开发工程,主要学习RAG检索增强生成:包括Naive RAG、Advanced-RAG以及RAG性能评估,还有GraphRAG在内的多个RAG热门项目的分析。

img

L3阶段:跃迁篇丨Agent智能体架构设计

L3阶段:大模型Agent应用架构进阶实现,主要学习LangChain、 LIamaIndex框架,也会学习到AutoGPT、 MetaGPT等多Agent系统,打造Agent智能体。

img

L4阶段:精进篇丨模型微调与私有化部署

L4阶段:大模型的微调和私有化部署,更加深入的探讨Transformer架构,学习大模型的微调技术,利用DeepSpeed、Lamam Factory等工具快速进行模型微调,并通过Ollama、vLLM等推理部署框架,实现模型的快速部署。

img

L5阶段:专题集丨特训篇 【录播课】

img
四、资料领取:全套内容免费抱走,学 AI 不用再找第二份

不管你是 0 基础想入门 AI 大模型,还是有基础想冲刺大厂、了解行业趋势,这份资料都能满足你!
现在只需按照提示操作,就能免费领取:

👇👇扫码免费领取全部内容👇👇

2026 年想抓住 AI 大模型的风口?别犹豫,这份免费资料就是你的 “起跑线”!

Logo

有“AI”的1024 = 2048,欢迎大家加入2048 AI社区

更多推荐