【学术会议前沿信息|科研必备】JPCS/IEEE出版·EI检索 | 2026材料工程、应用力学、电子AI、应用经济学、管理科学、社会发展、可再生能源与节能国际会议征稿
【学术会议前沿信息|科研必备】JPCS/IEEE出版·EI检索 | 2026材料工程、应用力学、电子AI、应用经济学、管理科学、社会发展、可再生能源与节能国际会议征稿
·
【学术会议前沿信息|科研必备】JPCS/IEEE出版·EI检索 | 2026材料工程、应用力学、电子AI、应用经济学、管理科学、社会发展、可再生能源与节能国际会议征稿
【学术会议前沿信息|科研必备】JPCS/IEEE出版·EI检索 | 2026材料工程、应用力学、电子AI、应用经济学、管理科学、社会发展、可再生能源与节能国际会议征稿
文章目录
欢迎铁子们点赞、关注、收藏!
祝大家逢考必过!逢投必中!上岸上岸上岸!upupup
大多数高校硕博生毕业要求需要参加学术会议,发表EI或者SCI检索的学术论文会议论文。详细信息可扫描博文下方二维码 “
学术会议小灵通”或参考学术信息专栏:https://ais.cn/u/mmmiUz
前言
- 智汇古都,创领未来! 在千年古都与北国冰城,将你的前沿研究转化为国际学术舞台上的璀璨星光!✨
🔬 第五届材料工程与应用力学国际学术会议(ICMEAAE 2026)
2026 5th International Conference on Materials Engineering and Applied Mechanics
- 📅 时间:2026年3月6-8日
- 📍 地点:中国·西安
- ✨ 亮点:在古都西安探讨材料科学与应用力学前沿,JPCS稳定出版,助力新材料设计与力学性能突破!
- 🔍 检索:EI Compendex, Scopus
- 👥 适合投稿人群:材料科学、力学、工程物理领域研究者,欢迎分享新型材料与结构创新成果!
- 代码示例:基于图神经网络的晶体结构缺陷预测算法
import torch
import torch.nn as nn
import torch.nn.functional as F
class CrystalDefectGNN(nn.Module):
"""用于预测晶体材料位错与空位缺陷的图神经网络"""
def __init__(self, atom_feat_dim=64, hidden_dim=128):
super().__init__()
# 原子特征编码器
self.atom_encoder = nn.Linear(atom_feat_dim, hidden_dim)
# 边特征消息传递层
self.edge_message = nn.Sequential(
nn.Linear(hidden_dim*2 + 3, hidden_dim), # 3D相对坐标
nn.ReLU(),
nn.Linear(hidden_dim, hidden_dim)
)
# 缺陷预测头
self.defect_head = nn.Sequential(
nn.Linear(hidden_dim, hidden_dim//2),
nn.ReLU(),
nn.Linear(hidden_dim//2, 2) # 位错能量、空位形成能
)
def forward(self, atom_features, edge_index, edge_vectors):
# 原子特征编码
h = self.atom_encoder(atom_features)
# 消息传递
src, dst = edge_index
edge_features = torch.cat([h[src], h[dst], edge_vectors], dim=1)
messages = self.edge_message(edge_features)
# 聚合消息
aggregated = torch.zeros_like(h)
for i in range(len(src)):
aggregated[dst[i]] += messages[i]
# 缺陷预测
defect_pred = self.defect_head(aggregated)
return defect_pred
# 使用示例
model = CrystalDefectGNN(atom_feat_dim=64, hidden_dim=128)
atom_features = torch.randn(100, 64) # 100个原子
edge_index = torch.randint(0, 100, (2, 500)) # 500条边
edge_vectors = torch.randn(500, 3) # 相对坐标
pred = model(atom_features, edge_index, edge_vectors)
print(f"缺陷预测结果形状: {pred.shape}")
print(f"位错能范围: [{pred[:,0].min():.3f}, {pred[:,0].max():.3f}] eV")
💡 第五届电子技术与人工智能国际学术会议(ETAI 2026)
The 5th International Conference on Electronics Technology and Artificial Intelligence
- 📅 时间:2026年3月6-8日
- 📍 地点:中国·哈尔滨
- ✨ 亮点:在冰雪之城哈尔滨聚焦电子技术与AI融合,IEEE出版赋能,探讨智能系统与芯片设计新前沿!
- 🔍 检索:IEEE Xplore, EI Compendex, Scopus
- 👥 适合投稿人群:电子工程、人工智能、集成电路领域师生学者,诚邀展示硬件与算法协同创新!
- 代码示例:模拟忆阻器交叉阵列的脉冲神经网络推理
import numpy as np
class MemristiveSNNInference:
"""基于忆阻器交叉阵列的脉冲神经网络推理模拟器"""
def __init__(self, input_size=128, hidden_size=64, output_size=10):
# 模拟忆阻器电导值(权重)
self.W1 = np.random.uniform(0.1, 1.0, (input_size, hidden_size))
self.W2 = np.random.uniform(0.1, 1.0, (hidden_size, output_size))
# 神经元膜电位
self.V_hidden = np.zeros(hidden_size)
self.V_output = np.zeros(output_size)
# 脉冲阈值
self.threshold = 1.0
self.leak_factor = 0.9
def simulate_timestep(self, input_spikes, dt=1e-3):
"""模拟一个时间步的脉冲传播"""
# 隐藏层膜电位更新
self.V_hidden = self.V_hidden * self.leak_factor + np.dot(input_spikes, self.W1) * dt
# 隐藏层脉冲发放
hidden_spikes = (self.V_hidden > self.threshold).astype(float)
self.V_hidden[hidden_spikes > 0] = 0 # 发放后重置
# 输出层膜电位更新
self.V_output = self.V_output * self.leak_factor + np.dot(hidden_spikes, self.W2) * dt
# 输出层脉冲发放
output_spikes = (self.V_output > self.threshold).astype(float)
self.V_output[output_spikes > 0] = 0
return hidden_spikes, output_spikes
def online_weight_update(self, pre_spikes, post_spikes, lr=0.01):
"""模拟忆阻器的在线权重更新(STDP规则简化版)"""
# STDP-like 更新规则
for i in range(len(pre_spikes)):
for j in range(len(post_spikes)):
if pre_spikes[i] > 0 and post_spikes[j] > 0:
# 同时激活时增强连接
self.W1[i, j] += lr
elif pre_spikes[i] > 0 and post_spikes[j] == 0:
# 仅前激活时减弱连接
self.W1[i, j] -= lr * 0.5
# 限制电导值范围
self.W1 = np.clip(self.W1, 0.1, 1.0)
# 使用示例
snn = MemristiveSNNInference(input_size=32, hidden_size=16, output_size=5)
input_spikes = np.random.randint(0, 2, 32) # 二进制脉冲输入
# 模拟100个时间步
for t in range(100):
hidden_spikes, output_spikes = snn.simulate_timestep(input_spikes)
# 在线学习
if t % 10 == 0:
snn.online_weight_update(input_spikes, hidden_spikes)
print(f"隐藏层脉冲发放次数: {np.sum(hidden_spikes)}")
print(f"输出层脉冲发放次数: {np.sum(output_spikes)}")
📈 第三届应用经济学、管理科学与社会发展国际学术会议(AEMSS 2026)
2026 3rd International Conference on Applied Economics, Management Science and Social Development
- 📅 时间:2026年3月13-15日
- 📍 地点:中国·昆明
- ✨ 亮点:在春城昆明探讨经济管理与社会发展,Atlantis出版推动学术成果在产业与政策中的应用转化!
- 🔍 检索:CNKI
- 👥 适合投稿人群:经济学、管理学、社会学领域研究者,期待分享实证研究与理论模型创新!
- 代码示例:多智能体经济模拟与政策影响评估系统
import numpy as np
class MultiAgentEconomicSimulator:
"""多智能体经济系统模拟器"""
def __init__(self, n_agents=100, n_goods=3):
self.n_agents = n_agents
self.n_goods = n_goods
# 智能体属性
self.productivity = np.random.uniform(0.5, 2.0, n_agents)
self.preferences = np.random.dirichlet(np.ones(n_goods), n_agents)
self.money = np.random.uniform(10, 100, n_agents)
self.inventory = np.random.uniform(0, 20, (n_agents, n_goods))
# 市场价格
self.prices = np.ones(n_goods)
def production_phase(self, tax_rate=0.1):
"""生产阶段:智能体根据生产力生产商品"""
production = np.zeros((self.n_agents, self.n_goods))
for i in range(self.n_agents):
# 每个智能体专业化生产一种商品
specialty = i % self.n_goods
output = self.productivity[i] * (1 - tax_rate)
production[i, specialty] = output
self.inventory += production
return production
def trading_phase(self):
"""交易阶段:基于供需的价格发现和交易"""
# 计算总供给和总需求
total_supply = self.inventory.sum(axis=0)
total_demand = np.zeros(self.n_goods)
for i in range(self.n_agents):
# 需求取决于偏好和收入
budget = self.money[i] * 0.5 # 花费一半金钱
demand_i = self.preferences[i] * budget / self.prices
total_demand += demand_i
# 价格调整(简化版瓦尔拉斯调节)
excess_demand = total_demand - total_supply
price_adjustment = excess_demand / (total_supply + 1e-8)
self.prices *= (1 + 0.1 * price_adjustment)
# 执行交易
for i in range(self.n_agents):
for g in range(self.n_goods):
# 购买决策
desired = self.preferences[i, g] * self.money[i] * 0.5 / self.prices[g]
actual = min(desired, self.money[i] / self.prices[g])
# 更新库存和金钱
if actual > 0:
self.inventory[i, g] += actual
self.money[i] -= actual * self.prices[g]
return self.prices
def evaluate_policy(self, policy_fn, steps=100):
"""评估政策函数对经济指标的影响"""
metrics = []
for step in range(steps):
# 应用政策(如税率调整)
tax_rate = policy_fn(step, self)
# 运行经济周期
self.production_phase(tax_rate)
prices = self.trading_phase()
# 收集指标
gdp = np.sum(self.inventory * prices)
inequality = np.std(self.money) / np.mean(self.money)
metrics.append({
'step': step,
'gdp': gdp,
'inequality': inequality,
'avg_price': np.mean(prices),
'tax_rate': tax_rate
})
return metrics
# 使用示例
economy = MultiAgentEconomicSimulator(n_agents=50, n_goods=2)
# 定义反周期税收政策
def countercyclical_policy(step, econ):
base_rate = 0.1
gdp_growth = econ.inventory.sum() / (economy.n_agents * 2)
if gdp_growth > 1.1:
return base_rate + 0.05 # 过热时增税
elif gdp_growth < 0.9:
return base_rate - 0.05 # 衰退时减税
return base_rate
# 运行模拟并评估政策
results = economy.evaluate_policy(countercyclical_policy, steps=50)
print(f"最终GDP: {results[-1]['gdp']:.2f}")
print(f"基尼系数: {results[-1]['inequality']:.3f}")
print(f"平均价格: {results[-1]['avg_price']:.3f}")
🌞 第二届可再生能源与节能国际学术会议(REEC 2026)
2026 2nd International Conference on Renewable Energy and Energy Conservation
- 📅 时间:2026年3月13-15日
- 📍 地点:中国·江西新余
- ✨ 亮点:在新能源城市新余聚焦绿色能源革命,JPCS出版助力太阳能、储能与节能技术研发突破!
- 🔍 检索:EI Compendex, Inspec, Scopus
- 👥 适合投稿人群:能源工程、环境科学、电力系统领域师生学者,欢迎分享清洁能源技术创新与应用!
- 代码示例:基于注意力机制的风光互补发电功率预测算法
import torch
import torch.nn as nn
import torch.nn.functional as F
class RenewableEnergyPredictor(nn.Module):
"""风光互补发电功率预测模型"""
def __init__(self, input_features=8, seq_len=24, hidden_dim=64):
super().__init__()
# 气象特征编码器
self.weather_encoder = nn.LSTM(input_features, hidden_dim, batch_first=True)
# 时间特征编码器(小时、星期、季节)
self.time_encoder = nn.Embedding(24*7*4, hidden_dim) # 小时×星期×季节
# 跨模态注意力
self.cross_attention = nn.MultiheadAttention(hidden_dim*2, num_heads=4, batch_first=True)
# 时空融合模块
self.fusion_layer = nn.Sequential(
nn.Linear(hidden_dim*4, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, 2) # 预测风、光两种功率
)
# 不确定性估计
self.uncertainty_head = nn.Linear(hidden_dim, 2) # 均值和方差
def forward(self, weather_data, time_indices, historical_power):
batch_size = weather_data.shape[0]
# 编码气象数据
weather_features, _ = self.weather_encoder(weather_data)
weather_features = weather_features[:, -1, :] # 取最后时间步
# 编码时间特征
time_features = self.time_encoder(time_indices)
# 拼接历史功率特征
historical_features = historical_power.view(batch_size, -1)
# 跨模态注意力融合
combined = torch.cat([weather_features.unsqueeze(1),
time_features.unsqueeze(1)], dim=2)
attended, _ = self.cross_attention(combined, combined, combined)
attended = attended.squeeze(1)
# 最终特征融合
all_features = torch.cat([attended, historical_features], dim=1)
# 功率预测
power_pred = self.fusion_layer(all_features)
# 不确定性估计
uncertainty = F.softplus(self.uncertainty_head(attended))
return power_pred, uncertainty
def probabilistic_forecast(self, weather_data, time_indices, historical_power, n_samples=100):
"""概率性预测:生成多个可能场景"""
with torch.no_grad():
mean_pred, uncertainty = self(weather_data, time_indices, historical_power)
# 从预测分布中采样
samples = []
for _ in range(n_samples):
noise = torch.randn_like(mean_pred) * uncertainty[:, 0:1]
sample = mean_pred + noise
samples.append(sample)
samples = torch.stack(samples, dim=1) # [batch, n_samples, 2]
# 计算置信区间
lower_bound = torch.quantile(samples, 0.05, dim=1)
upper_bound = torch.quantile(samples, 0.95, dim=1)
return {
'mean': mean_pred,
'samples': samples,
'confidence_interval': (lower_bound, upper_bound)
}
# 使用示例
model = RenewableEnergyPredictor(input_features=6, seq_len=24, hidden_dim=32)
# 模拟输入数据
batch_size = 4
weather_data = torch.randn(batch_size, 24, 6) # 24小时,6个气象特征
time_indices = torch.randint(0, 24*7*4, (batch_size,)) # 时间索引
historical_power = torch.randn(batch_size, 48) # 过去48小时功率数据
# 预测
power_pred, uncertainty = model(weather_data, time_indices, historical_power)
prob_result = model.probabilistic_forecast(weather_data, time_indices, historical_power, n_samples=50)
print(f"预测风力功率: {power_pred[:,0].mean():.2f} ± {uncertainty[:,0].mean():.2f} kW")
print(f"预测光伏功率: {power_pred[:,1].mean():.2f} ± {uncertainty[:,1].mean():.2f} kW")
print(f"95%置信区间宽度: {(prob_result['confidence_interval'][1] - prob_result['confidence_interval'][0]).mean():.2f}")
- 让思想跨越学科边界,用研究赋能可持续发展! 在国际顶尖平台,与世界分享你的智慧,共同塑造更绿色、更智能的未来!🌟
更多推荐



所有评论(0)