1. Codex 为何物?

官网地址:https://developers.openai.com/codex/quickstart

在这里插入图片描述

OpenAI Codex 是一款面向真实工程场景的软件工程 AI 代理(Coding Agent),它不只是一个简易的代码生成工具,而是能深入参与实际开发流程的工程级助手。 Codex 能理解 大型 或陌生的代码库结构、接收自然语言指令、自动生成代码、修复 Bug、运行测试、进行代码审查,并在安全隔离的环境中执行开发任务,它的目标不是简单回答“怎么写某段代码”,而是更像一名可以与工程师协同工作的虚拟开发者。

Codex 可以运行在多种环境中 —— 包括 IDE、终端命令行、Web 界面的 ChatGPT 侧边栏等,并能结合项目上下文调整输出结果,官方强调 Codex 能从整个代码仓库中提取上下文来理解依赖关系、计划新功能和查找问题,从而帮助团队更快规划与交付产品

在实际使用中,Codex 主要体现在以下几个工程级能力上:

  • 【编写代码】:开发者只需用自然语言描述需求,Codex 会结合现有项目结构和代码规范生成实现代码,而不是孤立的函数片段
  • 【理解陌生或遗留代码库】:Codex 可以阅读复杂、年代较久的代码,并解释系统结构、核心逻辑和关键依赖,帮助开发者快速上手
  • 【代码审查】:Codex 能分析代码中的潜在 Bug、逻辑问题以及容易被忽略的边界情况,起到初级代码审查的作用
  • 【调试与修复问题】:当测试失败或程序异常时,Codex 可以帮助定位错误来源、分析失败原因,并给出针对性的修复建议
  • 【自动化工程任务】:Codex 能执行重构、测试、迁移、初始化配置等重复性工作,让开发者把精力集中在更高价值的工程决策上

开发者只需用自然语言描述需求,Codex 就可结合整个项目上下文给出解决方案,并且在需要时自动编辑文件、运行测试等,减轻人工重复工作和上下文切换的负担。

2. 账号与环境准备

2.1 国内注册

博主不太建议直接使用国内中间代理的 Codex,虽然口头上说是 “直连”,其实本质是走了代理,因此也踏了不少坑,费用是直连的几倍,最终使用了直连的方式。这里不讲述如何使用国内的,网上搜索应该一大堆。

2.2 官方直连

直连的方式很简单,只需要 魔法”+“注册” + “代充 即可,相信大家都懂,费用大概一个月100多,而且根本用不完,相比国内的中间代理,省了不止一倍,而且不存在稳定性的问题。

怎么使用 “魔法”,这里不再阐述了,适合自己就好,现在官网并不支持注册,可以自己去某宝买一个账号,同时让他代充即可。最后登录成功的 web 页面如下,可以看到目前默认使用 GPT 5.2,同时也支持邀请团队成员(这里使用的是 team 版,plus 版本可能更贵):

在这里插入图片描述

设置页面 也能看到用量:

在这里插入图片描述

2.3 价格与订阅方案

OpenAI 的 AI Codex 编程助手 并不是单独付费的单品,而是包含在不同 ChatGPT 订阅计划中的一项高级功能,用户通过这些计划即可在 WebCLIIDE 扩展等环境中使用 Codex 执行代码生成、重构、代码审查等任务。

Codex 的订阅计划如下

方案 /价格 定位 特性
Plus($20/月 ) 轻量编码需求 每周适合做几个中等规模的编码会话,可在 Web、CLI、IDE 中使用 Codex,以及获得最新模型和扩展使用额度
Pro($200/月 ) 全职开发者 包含 Plus 的所有内容,同时获得更高的使用限额、优先请求处理、更高性能的云任务等能力。
Business($30/用户/月) 团队与企业 适合公司团队使用,包括更大的 VM 实例、更强安全性控制、可共享使用额度等。
Enterprise / Edu 大规模组织 在 Business 的基础上提供企业级安全与管理功能,如 SAML/SSO、审计日志、用户分析、数据驻留等。

订阅中包含的 Codex 特性:

  • Web、CLI、IDE 扩展环境中的 Codex 辅助编码;
  • 最新 Codex 模型(如 GPT-5.2-Codex);
  • 较高的本地/云端使用额度(Pro 计划更高);
  • 可用 ChatGPT 额度扩展(通过购买额外 credits);

下面我帮你 补充完善 3.2 / 3.3 部分内容,尽可能保留原始链接的官方说明细节,并结合官方 Quickstart 页面信息进行整理。([OpenAI Developers][1])


3. Codex 安装指南

至此,相信读者们都能注册 Codex 成功了,那么怎么使用呢?这里讲解其安装方式。

3.1 系统与环境要求

在开始安装 Codex 之前,需要确保满足以下安装环境,整体配置门槛不高,主流开发环境均可顺利运行。

类型 要求
操作系统 macOS 11.0 及以上,Ubuntu 20.04+/Debian 11+,或 Windows 10+/11(推荐使用 WSL 2)
硬件 至少 4GB 内存(推荐 8GB 及以上)
处理器 x86_64 或 ARM64 架构处理器
依赖软件 Git 2.30+
Python 3.10+
Node.js 18+
运行环境 Docker 20.10+(可选,但强烈推荐)
网络 需要稳定的互联网连接,用于依赖下载、认证及模型调用
Shell Bash 或 Zsh(macOS / Linux),Windows 建议使用 WSL Bash
权限 当前用户需具备本地软件安装与网络访问权限

3.2 IDE 扩展

在这里插入图片描述

Codex 提供了 IDE 集成扩展,可以在熟悉的开发环境中启动 AI 编程助手,提升效率,官方 Quickstart 列出了多个常用编辑器的下载方式:

支持的 IDE 环境

安装与使用流程

  1. 从下载链接下载安装对应扩展;
  2. 在 IDE 中启用扩展后,Codex 会显示在侧边栏;
  3. 使用 ChatGPT 账号或 API key 登录,完成授权;
  4. Codex 会默认启动在 Agent 模式,可读取文件、运行命令并修改项目目录文件,建议配合 Git 管理变更记录。

3.3 CLI 安装

Codex CLI 是一款运行在本地终端的轻量级 AI 编程代理,可通过命令行与代码库交互,CLI 支持 macOS / Windows / Linux 平台,并可结合 Git 管理本地项目。

官方 Quickstart 提供了两个主流安装方式:

# 使用 npm 全局安装
npm install -g @openai/codex

# 或使用 Homebrew 安装
brew install codex

安装完成后,在终端运行:

codex

首次运行时,会提示你使用 ChatGPT 账号登录API key 登录,登录成功后,CLI 会提升权限读取当前目录的代码库,并允许你发出自然语言指令来完成任务。

3.4 Cloud(Web 云端)

CloudCodex 在线版,可直接在浏览器使用,无需本地安装。你可以在浏览器中创建项目、执行任务,并将 Codex 与 GitHub 仓库连接。使用流程如下:

  1. 在浏览器打开 Cloud Codex 平台。
  2. 登录 ChatGPT 账号;
  3. 在环境设置中连接你需要操作的 GitHub 仓库;
  4. 发起任务并监控执行进度;
  5. 使用 diff 工具检查变更,可直接在网页上创建 Pull Request。

在这里插入图片描述
特点如下:

  • 零安装:无需在本地配置,只要联网即可使用;
  • 集成 GitHub:可将 AI 修改整合到团队协作流程;
  • 实时预览:在浏览器中实时查看日志与变更摘要。

3.5 三种安装方式对比

方式 安装需求 使用模式 代码修改 场景适用性
IDE 扩展 本地插件安装 图形 IDE 集成 可直接编辑项目 编辑器内即时建议
CLI 本地安装命令行工具 终端命令驱动 支持自动读写修改 自动任务与脚本
Cloud 无安装,仅浏览器 Web 可视化操作 支持与 GitHub PR 流程协作 协作开发 & 云端执行

4. Codex 快速入门(CLI 实战)

前面讲的可能都比较偏概念化,这里实际的来操作演示,效果可能更好。

4.1 初始化与授权登录

4.1.1 创建项目

初次使用,我们可以进入项目的根目录,这里为了方便演示,我新建了一个 html-project 的文件夹,然后执行 codex 命令如下:

mkdir html-project
cd html-projectc
codex

4.1.2 登录与授权流程

运行后,会提示登录,这里提供两种登录方式,一种是直接跳转至 web 页面登录,一种是使用 API KEY,这里使用跳转 web 方式登录:

在这里插入图片描述

选择第一种之后,会自动跳转到浏览器授权页面:
在这里插入图片描述

点击 Continue 授权,授权成功后,页面会提示如下:
在这里插入图片描述

切换回终端,提示登录成功了,
在这里插入图片描述
登录成功页面如下:
在这里插入图片描述

4.2 用一句话完成一个真实需求

接下来,我们可以开发任务,例如:帮我创建一个静态的页面,打开后,是星空的动态效果。可以看到,Codex 在执行任务的过程中,会提示用户是否要执行该操作,上述有三个选项,我们可以选择2,意思是整个执行的过程都同意,不需要每次都提示:
在这里插入图片描述

最后执行成功的结果如下:
在这里插入图片描述
打开生成的HTML,可以看到如下效果,效果还是挺不错的。
在这里插入图片描述

5. 文末

到这里,相信各位童鞋应该已经能清晰感受到一件事:

Codex 并不是一个“写代码的 AI”,而是一个真正参与工程流程的软件工程代理。

它可以:

  • 理解完整代码仓库,而不是零散的代码片段
  • 多个文件之间进行一致性修改与重构
  • 执行真实命令、运行测试、定位并修复错误
  • 在安全可控的前提下,逐步推进真实开发任务

不论是通过 IDE 插件CLI 命令行,还是 Cloud Web 方式,Codex 都在试图改变我们与代码交互的方式 —— 从 我告诉你怎么写代码” → “我告诉你我要做什么。希望本文能对大家理解和使用 Codex 有所帮助,也欢迎在评论区交流你的使用经验和踩坑心得,谢谢大家的阅读,本文完!

Logo

有“AI”的1024 = 2048,欢迎大家加入2048 AI社区

更多推荐