多步检索增强生成(RAG)已成为增强大型语言模型(LLMs)在需要全局理解和深入推理任务中的广泛策略。 许多RAG系统集成了工作内存模块以整合检索到的信息。

当大语言模型(LLM)面对 “分析某公司近 3 年营收波动的多维度原因”“拆解长论文中多个实验的关联逻辑” 这类复杂任务时,仅靠 “一次检索信息 + 一次生成回答” 的单步 RAG(检索增强生成),往往会因信息覆盖不足、推理深度不够而 “力不从心”。

于是,多步 RAG作为进阶方案应运而生 —— 它让 LLM 通过 “多轮检索补信息、多轮推理理逻辑” 的循环,逐步攻克复杂任务,但这一方案也暗藏新的痛点,而一篇最新论文提出的 “超图记忆机制”,正为其提供了优化思路。

一、从单步到多步:RAG 的能力升级

要理解多步 RAG 的价值,首先需要明确它与单步 RAG 的核心差异:

单步 RAG

是 “1 次检索 + 1 次生成” 的简单闭环,适合 “某产品上市时间” 这类单一信息查询任务,优势是流程快、成本低,但短板也很明显 —— 无法覆盖复杂任务的多维度信息,回答易片面。

多步 RAG

则是 “多轮检索 + 多轮推理” 的动态循环:LLM 会先拆解复杂任务为子问题,第一次检索某部分信息后,基于推理发现信息缺口,再针对性进行下一次检索,直到补全所有必要信息后,整合生成最终回答。比如分析公司营收波动时,它会先检索 “近 3 年营收数据”,发现缺 “波动原因” 后,再检索 “对应年份的行业政策、公司动作”,最后补全 “竞品动态”,最终形成完整分析。

这种升级让多步 RAG 能胜任长文档分析、多关系问答、跨领域信息整合等复杂任务,但它也有自己的 “软肋”。

二、单步 RAG vs 多步 RAG 核心对比清单

对比维度 单步 RAG 多步 RAG
核心定位 基础版 RAG,“1 次检索 + 1 次生成” 的单次闭环 进阶版 RAG,“多轮检索 + 多轮推理” 的循环闭环
适用场景 简单任务:1. 单一信息查询(如 “某产品上市时间”)2. 短文本的直接问答 复杂任务:1. 长文档 / 多文档综合分析(如 “拆解论文的 3 个实验结论”)2. 多关系 / 多维度问答(如 “某事件的时间线 + 参与者 + 影响”)3. 跨领域信息整合(如 “结合政策 + 数据分析行业趋势”)
典型工作流程 1. 接收用户查询2. 1 次检索相关信息3. 直接生成回答 1. 接收用户查询→拆解为子任务2. 多轮 “检索子任务信息→推理补全缺口”3. 整合所有信息后生成回答
核心优势 1. 流程简单,响应速度快2. 检索 / 推理成本低 1. 能覆盖复杂任务的多维度信息2. 推理更深入、回答更全面
主要痛点 1. 无法处理需要多信息的复杂任务2. 信息覆盖不足,回答易片面 1. 多轮检索 / 推理效率低、成本高2. 易出现 “事实碎片化”(忽略信息间关联)
典型实现工具 / 方案 LangChain 基础 RAG 流程、Weaviate 单轮检索 LangGraph 多智能体 RAG、HGMem 超图记忆

三、多步 RAG 的痛点:被忽略的 “事实高阶关联”

现有多步 RAG 的核心缺陷,在于它的 “工作记忆” 是被动的 “孤立事实仓库”—— 每次检索到的信息,只是被简单堆存在记忆里,而非主动关联。

比如分析营收波动时,“2023 年行业监管收紧”“2024 年公司推出新品” 这两个事实,在传统多步 RAG 的记忆中是孤立的,LLM 无法自动捕捉 “监管收紧倒逼公司调整产品策略” 的高阶关联。这种 “静态存储” 会导致推理碎片化:LLM 只能零散调用单个事实,却无法整合多事实的联动关系,最终在长上下文任务中 “理不清全局逻辑”。

四、论文方案:用 “超图记忆” 织起事实的关联网

针对这一痛点,《IMPROVING MULTI-STEP RAG WITH HYPERGRAPH-BASED MEMORY…》一文提出了HGMem(基于超图的记忆机制),将多步 RAG 的 “被动存储记忆” 升级为 “主动关联的超图结构”:

超图的 “节点” 对应每次检索到的事实(比如 “2023 年监管收紧”“2024 年新品上市”);

超图的 “超边” 则用来连接多个节点(普通图只能连接 2 个节点,超图可连接多个),专门捕捉事实间的高阶关联(比如 “监管收紧→公司调整策略→推出新品” 的链条)。

简单来说,HGMem 不是 “堆事实”,而是把孤立的信息织成一张 “关联网”—— 它会主动识别事实间的复杂关系,将零散信息整合为有结构的知识,让 LLM 在后续推理中能调用 “关联后的全局信息”,而非孤立事实。

五、效果:让多步 RAG 的推理更连贯、更全局

论文在聊天任务、长文档处理等复杂场景中测试了 HGMem,结果显示:这一方案能持续提升多步 RAG 的性能,在不同任务中均优于传统多步 RAG 基线系统 —— 它让 LLM 不再 “碎片化推理”,而是能基于事实间的高阶关联,完成更深入的全局逻辑分析。

从单步 RAG 到多步 RAG,是 LLM 处理复杂任务的能力跃迁;而 HGMem 的出现,则补上了多步 RAG 的 “关联短板”。这一探索也意味着:未来的 RAG 优化,将更聚焦 “如何让记忆从‘存储’转向‘理解’”,让 LLM 在长上下文、复杂关系任务中,真正实现 “连贯、全局的推理”。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

Logo

有“AI”的1024 = 2048,欢迎大家加入2048 AI社区

更多推荐