文章介绍了AI应用开发的学习路线和实战项目,帮助程序员提升职场竞争力。随着AI Agent智能体时代的到来,各大互联网公司新增大量AI应用开发岗位。作者提供了从OpenAI代码评审到AI Agent智能体的完整学习路径,包括OpenAI应用(含支付)和AI MCP GateWay等项目实战。无论时间充裕还是紧张,都能找到适合自己的学习方案,为简历添加有竞争力的AI应用场景项目,助力职业发展。


沉淀、分享、成长,让自己和他人都能有所收获!😜

最近 AI 实在是太火了🔥,不是以前那种火在互联网上,而是火到互联网公司里头。之前是铺在 AI 算法上,现在是扎进 AI 应用里。一天天我们都下班了,AI Agent 应用项目组的小伙伴还在加班!🤨

其实这是个机会!

如果你的学历将将够得到中大厂,但总是被刷。或者之前在一些传统行业,但想进入互联网。那么,一定要在简历上添加 AI 应用类场景项目。

此类项目以 AI Agent 智能体和 OpenAI 应用为主,无需掌握底层算法或复杂调优能力。只要具备任一主流 AI 框架(如 Spring AI、Google ADK)使用经验,或有自主开发 AI SDK 及应用的实践,都能显著提升你的竞争力。

如果你最近在搜索招聘岗位,一定会发现各个公司都新增加了 AI 应用开发岗位,而且是非常多。因为公司里的各个部门,都需要基于 AI 做场景提效,因此所有的业务项目,都会被 AI 翻一遍。而且各个大厂的里的研发都比较倾向于参与到一些 AI 场景开发里,因为这必然后面做晋升述职可以讲的一个亮点。

为啥以前没那么 AI 应用开发的岗位?

2024年11月25日,AI MCP 协议发布,这东西就是 AI 的手脚,有了他以后 AI 进入了 Agent 智能体时代。以前我们都是问它,之后按照回答的流程,操作我们自己的场景。但现在,我们不是问,而是让它直接做。AI Agent 智能体,可以基于询问,把内容拆分,执行,判断,输出。给出最终的结果。

所以,公司里目前大量的业务场景,都开始做相关业务类型的智能体服务,也因此有了非常多的 AI Agent 智能体岗位。当你在Boss直聘,检索这些岗位后,就会知道他们都在哪些场景落地了(AI Agent + 业务)。

学习大模型 AI 如何助力提升市场竞争优势?

随着新技术的不断涌现,特别是在人工智能领域,大模型的应用正逐渐成为提高社会生产效率的关键因素。这些先进的技术工具不仅优化了工作流程,还极大地提升了工作效率。然而,对于个人而言,掌握这些新技术的时间差异将直接影响到他们的竞争优势。正如在计算机、互联网和移动互联网的早期阶段所展现的那样,那些最先掌握新技术的人往往能够在职场中占据先机。

掌握 AI 大模型技能,不仅能够提高个人工作效率,还能增强在求职市场上的竞争力。在当今快速发展的技术时代,大模型 AI 已成为推动市场竞争力的重要力量。个人和企业必须迅速适应这一变化,以便在市场中保持领先地位。

如何学习大模型 AI ?

在我超过十年的互联网企业工作经验中,我有幸指导了许多同行和后辈,并帮助他们实现个人成长和学习进步。我深刻认识到,分享经验和知识对于推动整个行业的发展至关重要。因此,尽管工作繁忙,我仍然致力于整理和分享各种有价值的AI大模型资料,包括AI大模型入门学习思维导图、精选学习书籍手册、视频教程以及实战学习等内容。通过这些免费的资源,我希望能够帮助更多的互联网行业朋友获取正确的学习资料,进而提升大家的技能和竞争力。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
在这里插入图片描述
在这里插入图片描述

一、初阶应用:建立AI基础认知

在第一阶段(10天),重点是对大模型 AI 的基本概念和功能进行深入了解。这将帮助您在相关讨论中发表高级、独特的见解,而不仅仅是跟随他人。您将学习如何调教 AI,以及如何将大模型与业务相结合。

主要学习内容:

  • 大模型AI的功能与应用场景:探索AI在各个领域的实际应用
  • AI智能的起源与进化:深入了解AI如何获得并提升其智能水平
  • AI的核心原理与心法:掌握AI技术的核心概念和关键原理
  • 大模型应用的业务与技术架构:学习如何将大模型AI应用于业务场景和技术架构中
  • 代码实践:向GPT-3.5注入新知识的示例代码
  • 提示工程的重要性与核心思想:理解提示工程在AI应用中的关键作用
  • Prompt的构建与指令调优方法:学习如何构建有效的Prompt和进行指令调优
  • 思维链与思维树的应用:掌握思维链和思维树在AI推理和决策中的作用
  • Prompt攻击与防范策略:了解Prompt攻击的类型和如何进行有效的防范
    在这里插入图片描述
    在这里插入图片描述
    、、、

二、中阶应用:深入AI实战开发

在第二阶段(30天),您将进入大模型 AI 的进阶实战学习。这将帮助您构建私有知识库,扩展 AI 的能力,并快速开发基于 agent 的对话机器人。适合 Python 和 JavaScript 程序员。

主要学习内容:

  • RAG的重要性:理解RAG在AI应用中的关键作用
  • 构建基础ChatPDF:动手搭建一个简单的ChatPDF应用
  • 检索基础:掌握信息检索的基本概念和原理
  • 理解向量表示:深入探讨Embeddings的原理和应用
  • 向量数据库与检索技术:学习如何使用向量数据库进行高效检索
  • 基于 vector 的 RAG 实现:掌握基于向量的RAG构建方法
  • RAG系统的高级扩展:探索RAG系统的进阶知识和技巧
  • 混合检索与RAG-Fusion:了解混合检索和RAG-Fusion的概念和应用
  • 向量模型的本地部署策略:学习如何在本地环境中部署向量模型
    在这里插入图片描述

三、高阶应用:模型训练

在这个阶段,你将掌握模型训练的核心技术,能够独立训练和优化大模型AI。你将了解模型训练的基本概念、技术和方法,并能够进行实际操作。

  • 模型训练的意义:理解为什么需要进行模型训练。
  • 模型训练的基本概念:学习模型训练的基本术语和概念。
  • 求解器与损失函数:了解求解器和损失函数在模型训练中的作用。
  • 神经网络训练实践:通过实验学习如何手写一个简单的神经网络并进行训练。
  • 训练与微调:掌握训练、预训练、微调和轻量化微调的概念和应用。
  • Transformer结构:了解Transformer的结构和原理。
  • 轻量化微调:学习如何进行轻量化微调以优化模型性能。
  • 实验数据集构建:掌握如何构建和准备实验数据集。
    在这里插入图片描述
    在这里插入图片描述

四、专家应用:AI商业应用与创业

在这个阶段,你将了解全球大模型的性能、吞吐量和成本等方面的知识,能够在云端和本地等多种环境下部署大模型。你将找到适合自己的项目或创业方向,成为一名被AI武装的产品经理。

  • 硬件选型:学习如何选择合适的硬件来部署和运行大模型AI。
  • 全球大模型概览:了解全球大模型的发展趋势和主要玩家。
  • 国产大模型服务:探索国产大模型服务的优势和特点。
  • OpenAI代理搭建:学习如何搭建OpenAI代理以扩展AI的功能和应用范围。
  • 热身练习:在阿里云 PAI 上部署 Stable Diffusion
  • 本地化部署:在个人计算机上运行大型模型
  • 私有化部署策略:大型模型的内部部署方法
  • 利用 vLLM 进行模型部署:高效部署大型模型的技术
  • 案例分析:如何在阿里云上优雅地私有部署开源大型模型
  • 开源 LLM 项目的全面部署:从零开始部署开源大型语言模型
  • 内容安全与合规:确保AI应用的内容安全和合规性
  • 算法备案流程:互联网信息服务算法的备案指南
    在这里插入图片描述

通过这些学习内容,您不仅能够掌握大模型 AI 的基本技能,还能够深入理解其高级应用,从而在市场竞争中占据优势。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你无疑是AI领域的佼佼者。然而,即使你只能完成60-70%的内容,你也已经展现出了成为一名大模型AI大师的潜力。

最后,本文提供的完整版大模型 AI 学习资料已上传至 CSDN,您可以通过微信扫描下方的 CSDN 官方认证二维码免费领取【保证100%免费】在这里插入图片描述

Logo

有“AI”的1024 = 2048,欢迎大家加入2048 AI社区

更多推荐