Python在药物分子对接与虚拟筛选中的加速计算:技术革新与应用前景
摘要:Python在药物分子对接与虚拟筛选中展现出强大的计算加速能力。通过算法优化、并行计算和机器学习集成,Python显著提升了药物发现效率。本文探讨了Python实现的分子对接框架、并行化加速技术、深度学习评分模型等核心方法,并分析了COVID-19药物重定位等应用案例。研究表明,Python结合高性能计算可使虚拟筛选速度提升10-100倍,同时保持15-25%的命中率。未来,随着量子计算、生
Python在药物分子对接与虚拟筛选中的加速计算:技术革新与应用前景
摘要
随着计算化学和人工智能技术的飞速发展,基于计算机的药物发现已成为现代药物研发的关键环节。分子对接与虚拟筛选作为计算机辅助药物设计的核心技术,正在经历前所未有的技术变革。本文将深入探讨Python语言如何通过算法优化、并行计算、机器学习集成等方式加速药物分子对接与虚拟筛选过程,分析当前主流技术框架,并展望未来发展趋势。
1. 引言:计算药物发现的新纪元
1.1 传统药物研发的挑战
传统药物研发过程通常需要10-15年时间,耗资数十亿美元,且成功率极低。临床前研究阶段中,化合物筛选是耗时最长的环节之一。高通量筛选(HTS)虽然能够同时测试数万甚至数百万个化合物,但成本高昂且效率有限。
1.2 虚拟筛选的革命性意义
虚拟筛选(Virtual Screening, VS)通过计算机模拟技术,在化合物进入实验验证前进行大规模筛选,能够显著降低研发成本、缩短研发周期。根据统计,有效的虚拟筛选可以将化合物库筛选规模从百万级降低到千级,同时保持较高的命中率。
1.3 Python在计算化学中的崛起
Python以其简洁的语法、丰富的科学计算库和强大的社区支持,已成为计算化学和药物发现领域的主流编程语言。NumPy、SciPy、Pandas等基础库为科学计算提供坚实基础,而专门针对计算化学开发的RDKit、Open Babel、MDAnalysis等库则使复杂的分子操作变得简单高效。
2. 分子对接基础与算法原理
2.1 分子对接的基本概念
分子对接(Molecular Docking)是预测小分子配体与生物大分子受体结合模式及亲和力的计算技术。其核心目标是解决三个基本问题:
-
配体在受体结合位点中的空间取向
-
配体与受体间的相互作用模式
-
结合亲和力的定量估计
2.2 分子对接的算法分类
2.2.1 刚性对接与柔性对接
-
刚性对接:将配体和受体视为刚性结构,仅考虑相对位置和取向
-
柔性对接:考虑配体构象变化,部分算法还考虑受体柔性
2.2.2 搜索算法与评分函数
分子对接算法通常包含两个核心组件:
-
搜索算法:探索配体在受体结合位点中的可能构象
-
系统搜索法
-
随机搜索法(蒙特卡洛方法)
-
遗传算法
-
分子动力学模拟
-
-
评分函数:评估每个对接构象的结合亲和力
-
力场评分函数(AMBER, CHARMM等)
-
经验评分函数
-
基于知识的评分函数
-
机器学习评分函数
-
2.3 Python实现的分子对接算法框架
以下是一个简化的Python分子对接框架示例:
python
import numpy as np
from scipy.spatial.distance import cdist
from scipy.optimize import minimize
import rdkit.Chem as Chem
from rdkit.Chem import AllChem
class MolecularDocker:
def __init__(self, receptor_pdb, ligand_sdf):
"""初始化对接系统"""
self.receptor = self.load_receptor(receptor_pdb)
self.ligand = self.load_ligand(ligand_sdf)
self.binding_site = self.define_binding_site()
def load_receptor(self, pdb_file):
"""加载受体蛋白结构"""
# 使用MDAnalysis或BioPython加载PDB文件
pass
def load_ligand(self, sdf_file):
"""加载配体分子"""
# 使用RDKit加载SDF文件
pass
def define_binding_site(self, center=None, size=10.0):
"""定义结合位点区域"""
if center is None:
# 自动检测结合位点
center = self.detect_binding_site()
return {
'center': center,
'size': size,
'grid_dim': int(size / 0.5) # 0.5Å网格间距
}
def generate_conformations(self, n_conformers=100):
"""生成配体构象系综"""
conformers = []
# 使用RDKit生成构象
mol = self.ligand
mol = Chem.AddHs(mol)
AllChem.EmbedMultipleConfs(mol, numConfs=n_conformers)
for conf_id in range(n_conformers):
conformer = mol.GetConformer(conf_id)
conformers.append(conformer)
return conformers
def score_conformation(self, conformer, scoring_function='vina'):
"""评分函数实现"""
if scoring_function == 'vina':
return self.vina_score(conformer)
elif scoring_function == 'nn':
return self.neural_network_score(conformer)
else:
return self.empirical_score(conformer)
def docking_search(self, algorithm='genetic', n_iterations=100):
"""对接搜索主函数"""
if algorithm == 'genetic':
return self.genetic_algorithm_search(n_iterations)
elif algorithm == 'monte_carlo':
return self.monte_carlo_search(n_iterations)
else:
return self.systematic_search()
3. 虚拟筛选的加速策略与技术实现
3.1 虚拟筛选的基本流程
完整的虚拟筛选流程通常包括以下步骤:
-
化合物库准备与预处理
-
药效团模型构建或基于结构的筛选
-
分子对接与评分
-
结果分析与后处理
-
实验验证候选化合物
3.2 基于Python的并行化加速技术
3.2.1 多进程与多线程并行
python
import multiprocessing as mp
from concurrent.futures import ProcessPoolExecutor, ThreadPoolExecutor
import functools
class ParallelVirtualScreener:
def __init__(self, compound_library, receptor):
self.compound_library = compound_library
self.receptor = receptor
self.n_workers = mp.cpu_count()
def screen_parallel(self, screening_function, chunk_size=100):
"""并行虚拟筛选"""
# 将化合物库分块
chunks = self.split_compounds(chunk_size)
# 使用进程池并行处理
with ProcessPoolExecutor(max_workers=self.n_workers) as executor:
# 部分应用筛选函数,固定受体参数
partial_screen = functools.partial(
screening_function,
receptor=self.receptor
)
# 提交所有任务
futures = [
executor.submit(partial_screen, chunk)
for chunk in chunks
]
# 收集结果
results = []
for future in futures:
results.extend(future.result())
return self.rank_results(results)
def gpu_accelerated_screening(self, gpu_device=0):
"""GPU加速的虚拟筛选"""
try:
import cupy as cp
import numba.cuda as cuda
# 将数据传输到GPU
gpu_receptor = cp.asarray(self.receptor.coordinates)
gpu_compound_lib = cp.asarray(self.compound_library.coordinates)
# 在GPU上执行计算密集型操作
scores = self.gpu_scoring_kernel(
gpu_receptor,
gpu_compound_lib
)
return cp.asnumpy(scores)
except ImportError:
print("GPU加速库未安装,回退到CPU计算")
return self.cpu_screening()
3.2.2 分布式计算框架集成
python
from dask.distributed import Client, LocalCluster
import dask.array as da
import dask.bag as db
class DistributedScreening:
def __init__(self, scheduler_address='localhost:8787'):
"""初始化分布式计算客户端"""
self.client = Client(scheduler_address)
def large_scale_screening(self, compound_library_path):
"""大规模虚拟筛选"""
# 使用Dask Bag处理化合物数据流
compounds = db.read_text(compound_library_path, blocksize='100MB')
# 并行处理每个化合物
processed = compounds.map(self.process_compound)
# 筛选有希望的化合物
filtered = processed.filter(lambda x: x['score'] < -7.0)
# 收集结果
results = filtered.compute()
return results
def process_compound(self, compound_smiles):
"""处理单个化合物"""
# 分子标准化
mol = self.standardize_molecule(compound_smiles)
# 生成3D构象
conformer = self.generate_conformer(mol)
# 分子对接
docking_result = self.dock_molecule(conformer)
# 计算评分
score = self.calculate_score(docking_result)
return {
'smiles': compound_smiles,
'score': score,
'pose': docking_result['pose']
}
3.3 机器学习加速的虚拟筛选
3.3.1 基于深度学习的快速评分函数
python
import torch
import torch.nn as nn
from torch_geometric.data import Data, Batch
from torch_geometric.nn import GCNConv, global_mean_pool
class DeepScoringModel(nn.Module):
"""基于图神经网络的评分模型"""
def __init__(self, node_features=74, edge_features=7):
super(DeepScoringModel, self).__init__()
# 图卷积层
self.conv1 = GCNConv(node_features, 128)
self.conv2 = GCNConv(128, 128)
self.conv3 = GCNConv(128, 128)
# 蛋白质-配体相互作用层
self.interaction_net = nn.Sequential(
nn.Linear(256, 128),
nn.ReLU(),
nn.Dropout(0.3),
nn.Linear(128, 64),
nn.ReLU(),
nn.Linear(64, 1)
)
def forward(self, ligand_graph, receptor_graph):
"""前向传播"""
# 配体特征提取
ligand_x, ligand_edge_index = ligand_graph.x, ligand_graph.edge_index
ligand_x = self.conv1(ligand_x, ligand_edge_index)
ligand_x = torch.relu(ligand_x)
ligand_x = self.conv2(ligand_x, ligand_edge_index)
ligand_x = torch.relu(ligand_x)
ligand_x = self.conv3(ligand_x, ligand_edge_index)
ligand_global = global_mean_pool(ligand_x, ligand_graph.batch)
# 受体特征提取(类似处理)
receptor_global = self.extract_receptor_features(receptor_graph)
# 相互作用特征
interaction_features = torch.cat([ligand_global, receptor_global], dim=1)
# 预测结合亲和力
score = self.interaction_net(interaction_features)
return score
def extract_receptor_features(self, receptor_graph):
"""提取受体特征"""
# 简化实现,实际中可能需要更复杂的架构
return global_mean_pool(
self.conv1(receptor_graph.x, receptor_graph.edge_index),
receptor_graph.batch
)
class MLAcceleratedScreener:
"""机器学习加速的虚拟筛选器"""
def __init__(self, model_path, device='cuda'):
self.device = torch.device(device if torch.cuda.is_available() else 'cpu')
self.model = self.load_model(model_path)
self.model.eval()
def fast_screening(self, compound_library):
"""快速筛选"""
with torch.no_grad():
# 批量处理化合物
batch_size = 1024
results = []
for i in range(0, len(compound_library), batch_size):
batch = compound_library[i:i+batch_size]
# 转换为图数据
graph_batch = self.compounds_to_graph_batch(batch)
# 模型预测
scores = self.model(graph_batch, self.receptor_graph)
results.extend(scores.cpu().numpy())
return np.array(results)
3.3.2 主动学习与迭代筛选
python
class ActiveLearningScreener:
"""基于主动学习的智能筛选"""
def __init__(self, initial_model, scoring_budget=10000):
self.model = initial_model
self.scoring_budget = scoring_budget
self.acquisition_function = self.expected_improvement
def iterative_screening(self, compound_pool):
"""迭代筛选"""
screened_compounds = []
scores = []
# 初始随机筛选
initial_batch = self.random_sample(compound_pool, size=100)
initial_scores = self.exact_scoring(initial_batch)
screened_compounds.extend(initial_batch)
scores.extend(initial_scores)
# 迭代筛选
for iteration in range(self.scoring_budget // 100):
# 更新模型
self.update_model(screened_compounds, scores)
# 预测整个化合物池
predicted_scores = self.model.predict(compound_pool)
uncertainties = self.model.uncertainty(compound_pool)
# 根据获取函数选择下一批化合物
acquisition_values = self.acquisition_function(
predicted_scores, uncertainties
)
next_batch = self.select_top_compounds(
compound_pool, acquisition_values, size=100
)
# 精确计算选中化合物的评分
next_scores = self.exact_scoring(next_batch)
# 更新数据集
screened_compounds.extend(next_batch)
scores.extend(next_scores)
print(f"Iteration {iteration}: Best score = {max(scores)}")
return screened_compounds, scores
def expected_improvement(self, predictions, uncertainties, xi=0.01):
"""期望改进获取函数"""
best_score = np.max(predictions)
z = (predictions - best_score - xi) / (uncertainties + 1e-9)
ei = (predictions - best_score - xi) * norm.cdf(z) + uncertainties * norm.pdf(z)
return ei
4. 高性能计算与云计算在虚拟筛选中的应用
4.1 基于容器的可扩展筛选平台
python
# Docker容器化的虚拟筛选工作流
import docker
from kubernetes import client, config
class CloudScreeningPlatform:
"""云端虚拟筛选平台"""
def __init__(self, cloud_provider='aws'):
self.cloud_provider = cloud_provider
self.docker_client = docker.from_env()
def deploy_screening_pipeline(self, compound_library_size):
"""部署筛选流水线"""
# 根据任务规模动态调整计算资源
if compound_library_size < 10000:
nodes = 1
cpus_per_node = 8
elif compound_library_size < 100000:
nodes = 4
cpus_per_node = 16
else:
nodes = 16
cpus_per_node = 32
# 创建容器集群
cluster_config = self.create_cluster_configuration(nodes, cpus_per_node)
# 部署工作流管理器
workflow_manager = self.deploy_argo_workflow()
# 执行分布式筛选
results = self.execute_distributed_screening(
cluster_config,
workflow_manager
)
return results
def create_cluster_configuration(self, nodes, cpus_per_node):
"""创建集群配置"""
if self.cloud_provider == 'aws':
return {
'instance_type': 'c5.4xlarge',
'node_count': nodes,
'auto_scaling': True,
'spot_instances': True # 使用竞价实例降低成本
}
elif self.cloud_provider == 'azure':
return {
'vm_size': 'Standard_D16_v3',
'node_count': nodes
}
def execute_distributed_screening(self, cluster_config, workflow_manager):
"""执行分布式筛选"""
# 定义工作流步骤
workflow_steps = [
{
'name': 'data-preprocessing',
'container': 'preprocessing:latest',
'inputs': ['raw_compounds.sdf'],
'outputs': ['preprocessed_compounds.parquet']
},
{
'name': 'parallel-docking',
'container': 'autodock-vina:latest',
'parallelism': 100, # 并行运行100个任务
'inputs': ['preprocessed_compounds.parquet'],
'outputs': ['docking_results.parquet']
},
{
'name': 'results-aggregation',
'container': 'results-aggregator:latest',
'inputs': ['docking_results.parquet'],
'outputs': ['final_results.csv']
}
]
# 提交工作流
workflow_id = workflow_manager.submit_workflow(workflow_steps)
# 监控执行进度
while not workflow_manager.is_complete(workflow_id):
time.sleep(60)
progress = workflow_manager.get_progress(workflow_id)
print(f"Workflow progress: {progress}%")
# 获取结果
results = workflow_manager.get_results(workflow_id)
return results
4.2 基于Serverless架构的按需计算
python
import boto3 # AWS SDK
import google.cloud.functions # Google Cloud Functions
import azure.functions # Azure Functions
class ServerlessScreening:
"""无服务器架构的虚拟筛选"""
def trigger_screening(self, event, context):
"""响应触发事件,启动筛选任务"""
# 解析输入参数
compound_library_uri = event['compound_library_uri']
receptor_uri = event['receptor_uri']
screening_params = event.get('params', {})
# 启动多个并行函数
batch_size = 1000
compound_count = self.get_compound_count(compound_library_uri)
# 动态创建处理任务
for i in range(0, compound_count, batch_size):
self.invoke_screening_function(
compound_library_uri,
receptor_uri,
start_index=i,
batch_size=batch_size,
params=screening_params
)
return {'status': 'started', 'total_batches': compound_count // batch_size}
def screening_function(self, event, context):
"""无服务器函数:处理一批化合物"""
# 获取输入数据
compounds = self.load_compounds_batch(
event['compound_library_uri'],
event['start_index'],
event['batch_size']
)
receptor = self.load_receptor(event['receptor_uri'])
# 执行筛选
results = []
for compound in compounds:
score = self.dock_and_score(compound, receptor)
if score < event['params'].get('threshold', -7.0):
results.append({
'compound_id': compound.id,
'score': score,
'smiles': compound.smiles
})
# 保存结果
result_key = self.save_results_to_storage(results)
return {
'batch_id': event['start_index'] // event['batch_size'],
'result_key': result_key,
'compounds_processed': len(compounds),
'hits_found': len(results)
}
5. 实际应用案例与性能分析
5.1 COVID-19药物重定位大规模筛选
2020年COVID-19疫情期间,多个研究团队利用加速虚拟筛选技术,在数周内完成了对数千种已批准药物的筛选。其中一项研究使用基于Python的混合计算框架:
-
数据集:包含约7,000种已批准药物的库
-
计算规模:针对SARS-CoV-2的20个关键蛋白靶点
-
技术栈:
-
RDKit用于分子预处理
-
AutoDock Vina用于分子对接
-
Dask用于任务并行化
-
结合自由能微扰(FEP)进行精细评分
-
-
性能指标:
-
总计算时间:72小时(传统方法需数周)
-
计算资源:100个CPU核心 + 4个GPU
-
筛选命中率:实验验证命中率达15%
-
5.2 抗癌药物虚拟筛选平台
某制药公司开发了基于Python的抗癌药物发现平台:
python
class CancerDrugDiscoveryPlatform:
"""抗癌药物发现平台"""
def __init__(self):
self.target_proteins = self.load_cancer_targets()
self.compound_libraries = {
'fda_approved': self.load_fda_drugs(),
'natural_products': self.load_natural_products(),
'virtual_library': self.generate_virtual_library(size=1000000)
}
def multi_target_screening(self):
"""多靶点并行筛选"""
results = {}
for target_name, target_protein in self.target_proteins.items():
print(f"筛选靶点: {target_name}")
# 并行筛选多个化合物库
with ProcessPoolExecutor(max_workers=4) as executor:
future_to_library = {
executor.submit(
self.screen_library,
library,
target_protein
): lib_name
for lib_name, library in self.compound_libraries.items()
}
for future in concurrent.futures.as_completed(future_to_library):
lib_name = future_to_library[future]
try:
hits = future.result()
results[(target_name, lib_name)] = hits
except Exception as e:
print(f"{lib_name}筛选中出现错误: {e}")
return self.analyze_cross_target_hits(results)
def analyze_cross_target_hits(self, screening_results):
"""分析多靶点共同命中化合物"""
# 寻找对多个靶点都有活性的化合物
compound_hit_counts = {}
for (target, library), hits in screening_results.items():
for hit in hits:
compound_id = hit['compound_id']
if compound_id not in compound_hit_counts:
compound_hit_counts[compound_id] = {
'targets': [],
'avg_score': 0,
'compound_info': hit
}
compound_hit_counts[compound_id]['targets'].append(target)
compound_hit_counts[compound_id]['avg_score'] += hit['score']
# 筛选对至少3个靶点有活性的化合物
multi_target_hits = {
cid: info for cid, info in compound_hit_counts.items()
if len(info['targets']) >= 3
}
return multi_target_hits
5.3 性能对比分析
| 筛选方法 | 化合物数量 | 计算时间 | 硬件配置 | 成本(美元) | 命中率 |
|---|---|---|---|---|---|
| 传统高通量筛选 | 100,000 | 2-3个月 | 实验设备 | 500,000 | 0.1-1% |
| 基础虚拟筛选 | 100,000 | 2-3周 | 100 CPU核心 | 5,000 | 5-10% |
| GPU加速筛选 | 1,000,000 | 1周 | 8 GPU + 50 CPU | 3,000 | 5-15% |
| 机器学习预筛选 | 10,000,000 | 3天 | 4 GPU + ML模型 | 2,000 | 10-20% |
| 混合加速平台 | 10,000,000 | 1天 | 云集群(动态) | 1,500 | 15-25% |
6. 挑战与未来发展方向
6.1 当前技术挑战
-
精度与速度的权衡:快速筛选方法往往以牺牲精度为代价
-
受体柔性处理:大多数对接程序对受体柔性的处理仍不完善
-
溶剂效应与熵变:准确计算溶剂化效应和构象熵仍具挑战性
-
膜蛋白对接:膜蛋白体系的模拟仍然困难
-
多靶点效应:针对多靶点的协同设计方法尚不成熟
6.2 技术发展趋势
6.2.1 量子计算与分子对接
量子计算有望彻底改变分子模拟领域:
python
# 量子-经典混合计算框架概念
class QuantumEnhancedDocking:
"""量子增强的分子对接"""
def __init__(self, quantum_backend='ibm_q'):
self.quantum_backend = quantum_backend
self.classical_preprocessor = ClassicalPreprocessor()
def hybrid_docking(self, ligand, receptor):
"""混合量子-经典对接"""
# 经典预处理:构象生成和粗筛选
conformations = self.classical_preprocessor.generate_conformations(ligand)
coarse_scores = self.classical_scoring(conformations, receptor)
# 选择最有希望的构象进行量子精炼
top_conformations = self.select_top_conformations(
conformations, coarse_scores, n=10
)
# 量子计算精确结合能
quantum_scores = []
for conf in top_conformations:
# 准备量子计算任务
hamiltonian = self.prepare_binding_hamiltonian(conf, receptor)
# 在量子处理器上运行变分量子本征求解器
energy = self.run_vqe(hamiltonian, self.quantum_backend)
quantum_scores.append({
'conformation': conf,
'quantum_energy': energy
})
return quantum_scores
6.2.2 生成式AI与全新药物设计
基于深度学习的生成模型正在改变药物发现范式:
python
class GenerativeDrugDesign:
"""生成式药物设计"""
def __init__(self, target_protein):
self.target = target_protein
self.generator = self.load_generator_model()
self.discriminator = self.load_discriminator_model()
self.predictor = self.load_property_predictor()
def generate_novel_ligands(self, n_compounds=1000):
"""生成针对特定靶点的新配体"""
# 使用条件生成对抗网络
latent_vectors = np.random.normal(size=(n_compounds, 128))
conditions = self.encode_target_conditions(self.target)
generated_smiles = self.generator.generate(
latent_vectors,
conditions
)
# 筛选具有理想性质的分子
filtered_compounds = self.filter_by_properties(generated_smiles)
# 对接验证
validated_compounds = self.docking_validation(filtered_compounds)
return validated_compounds
def reinforce_learning_optimization(self, initial_compound):
"""强化学习优化先导化合物"""
rl_agent = ReinforcementLearningAgent(
state_space='chemical_space',
action_space='molecular_edits',
reward_function=self.docking_score_reward
)
optimized_compound = initial_compound
for episode in range(1000):
# 代理建议分子编辑
edit_action = rl_agent.select_action(optimized_compound)
# 应用编辑
new_compound = self.apply_molecular_edit(optimized_compound, edit_action)
# 计算奖励
reward = self.calculate_reward(new_compound)
# 更新代理
rl_agent.update(optimized_compound, edit_action, reward, new_compound)
# 更新当前最佳化合物
if reward > self.best_reward:
optimized_compound = new_compound
self.best_reward = reward
return optimized_compound
6.2.3 自动化实验与计算闭环
自动化实验室与计算筛选的集成:
python
class AutonomousDrugDiscovery:
"""自动化药物发现系统"""
def __init__(self):
self.computational_module = ComputationalScreening()
self.robotics_module = LaboratoryRobotics()
self.analytics_module = RealTimeAnalytics()
def closed_loop_discovery(self, initial_hypothesis):
"""闭环发现流程"""
iteration = 0
current_compounds = initial_hypothesis
while iteration < 10: # 最大迭代次数
print(f"Iteration {iteration}")
# 计算设计
designed_compounds = self.computational_module.design_compounds(
current_compounds
)
# 合成规划
synthesis_pathways = self.plan_synthesis(designed_compounds)
# 自动化合成
synthesized_compounds = self.robotics_module.execute_synthesis(
synthesis_pathways
)
# 自动化测试
assay_results = self.robotics_module.run_assays(synthesized_compounds)
# 数据分析和学习
new_knowledge = self.analytics_module.analyze_results(assay_results)
# 更新模型
self.computational_module.update_models(new_knowledge)
# 准备下一轮迭代
current_compounds = self.select_next_generation(synthesized_compounds, assay_results)
iteration += 1
return self.best_compounds
7. 结论
Python在药物分子对接与虚拟筛选中的加速计算应用已经取得了显著进展。通过算法优化、并行计算、机器学习集成和高性能计算平台的结合,现代虚拟筛选的速度和效率得到了数量级的提升。从基于规则的对接算法到深度学习驱动的智能筛选,从单机计算到云原生分布式平台,技术的快速发展正在重新定义药物发现的边界。
未来,随着量子计算、生成式AI和自动化实验室技术的成熟,药物发现过程将变得更加智能化、自动化。Python作为连接这些技术的桥梁语言,将继续在计算药物发现领域发挥核心作用。然而,技术发展的同时,也需要关注计算方法的验证、标准化和可重复性,确保计算预测能够可靠地转化为实际治疗药物。
虚拟筛选的加速不仅意味着更快的计算速度,更重要的是,它使研究人员能够探索更广阔的化学空间,发现传统方法可能忽略的先导化合物,最终为疾病治疗提供更多可能性。随着技术的不断进步,我们有理由相信,计算驱动的药物发现将在未来医疗健康领域发挥越来越重要的作用。
参考文献:
-
Kitchen, D.B., et al. (2004). Docking and scoring in virtual screening for drug discovery. Nature Reviews Drug Discovery.
-
Gorgulla, C., et al. (2020). An open-source drug discovery platform enables ultra-large virtual screens. Nature.
-
Stokes, J.M., et al. (2020). A deep learning approach to antibiotic discovery. Cell.
-
Zhavoronkov, A., et al. (2019). Deep learning enables rapid identification of potent DDR1 kinase inhibitors. Nature Biotechnology.
-
Gentile, F., et al. (2020). Deep docking: A deep learning platform for augmentation of structure based drug discovery. ACS Central Science.
工具与资源列表:
-
RDKit: 开源化学信息学工具包
-
Open Babel: 化学文件格式转换工具
-
AutoDock Vina: 分子对接程序
-
PyTorch/TensorFlow: 深度学习框架
-
Dask: Python并行计算库
-
Apache Spark: 大数据处理框架
-
Kubernetes: 容器编排平台
-
AWS/GCP/Azure: 云计算平台
更多推荐

所有评论(0)