本文介绍了如何使用本地 Ollama + Qwen 3 模型结合 Obsidian 构建完全离线、绝对隐私的 RAG 知识库。作者详细解释了本地化的必要性(解决隐私泄露、网络依赖和数据安全问题),阐述了 RAG 的基本原理(文档读取、切片、嵌入、存储),并通过 Electron 开发了 MyGPT 应用,实现高度个性化的本地 AI 助理,能基于个人知识库精准回答问题并提供参考来源。


在上一篇文章中,我介绍了自己使用 Obsidian 结合 PARA 方法论搭建起了自己的本地知识库,同时介绍了如何使用 Gemini CLI 让 Obsidian 有了强大的 AI 能力。

虽然 Gemini 很强,但它毕竟是云端模型,将私人的笔记数据发送到云端始终是许多人心中的一根刺。

今天来介绍下我是如何使用 本地 Ollama + Qwen 3 模型,结合 Obsidian 构建真正的本地隐私 RAG(检索增强生成)知识库的。我的目标很明确:打造一个完全离线、绝对隐私、且懂你的私人 AI 助理

为什么要 “完全本地化”?

Obsidian 的核心价值观是 “Your data is yours”(你的数据属于你)。当我们把所有的思考、日记、工作计划都记录在这些 Markdown 文件中时,它们就构成了我们的"第二大脑"。

然而,传统的云端 AI 助手存在天然的悖论:

  1. 隐私泄露风险:要让 AI 懂你,就得把数据发给它;发给它,数据就离开了你的控制。
  2. 网络依赖: 非常依赖于在线网络,如果断网就完全不可用。
  3. 数据安全:你的个性化模型在云端服务,如果云服务停止运营,个人训练的模型也就消失了。

如果你有一台还不错的电脑,那么构建本地 RAG 知识库就完美解决了这个问题:数据不出门,推理在本地,不仅安全又高效。

我想要的是什么?

有了构建的想法,接下来就是如何实施。其实一直以来,我都渴望拥有一个能记忆个人敏感信息的智能体助理。我可以放心地将一些个人或家人的敏感数据交给它,而它也能随时准确地回答我的提问。

比如我可以问它:“我爸妈的身份证号是多少?”“我去年过年的年夜饭都吃了什么?”“今年的车险我是什么时候缴的?”“六一儿童节晚上我和孩子们聊了什么?”涉及隐私的细节问题。

因为我们使用 Obsidian 作为知识库,所有的知识都存储在本地。配合 Thino 插件,可以实现类似于 Flomo 的灵感记忆存储。我便将这个插件与日记功能结合起来,专门用来记录生活中的琐事。

之前一直没有找到实现这个目标的有效路径,直到我使用 Obsidian 作为我的知识库,我这个想法才真正的变成了现实。

构建的底层原理:什么是 RAG?

构建个人知识库智能问答体,其实标准的做法那就是 RAG。

什么是 RAG?RAG (Retrieval-Augmented Generation,检索增强生成) 最简单理解是:它给大模型(LLM)配了一个实时查阅的“外挂数据库”或“离线手册”。

大模型虽然强大,但有两个致命伤:

  1. 幻觉(Hallucination):没见过的数据它会一本正经地胡说八道。
  2. 知识滞后:它的知识停留在训练结束的那一天(比如 2023 或 2024 年)。

RAG 的核心思想: 既然模型不能实时记住所有新知识,那就在回答问题前,先去“书架”上把相关的资料查出来,贴在 Prompt 后面发给模型:“请参考以下资料回答问题”。

所以我们只要把我们的 Obsidian 本地知识库作为外挂知识库让本地的模型参考,那他就可以基于这些知识回答我们的问题。

但是一般的模型并不能直接读取原始的文档,这中间需要一个对文档建立索引的过程,也就是将文档向量化。具体的过程如下:

  1. 读取:扫描 Obsidian 库中的 .md文件。
  2. 切片:把长文章切分成一个个小的文本块(Chunks)。
  3. 嵌入 (Embedding):利用 BGE-M3 模型,将这些文本块转换成高维向量。比如,“Obsidian 插件配置” 这段文字会被转化成一组代表其语义的数字。
  4. 存储:将这些向量存入本地的 ChromaDB 数据库。

完成这一步后,我们的知识库内容就可以被大模型检索和识别了。接下来就是第二步:大模型通过 RAG 的方式回答我们的私人问题。

它首先会识别用户的问题,把用户的问题也转成向量,然后在 ChromaDB 中快速寻找与问题最相关的笔记片段(Top-K)。将找出的文档块拼接到 Prompt 中,调用本地的推理模型生成答案,我使用的本地推理模型是 qwen-corder3:30b。

构建属于自己的 MyGPT

构建本地知识库也有很多种选择,也有些开源的产品选择,比如 RAGFlow 或者 PrivateGPT。我个人是选择了自己开发,有以下几个原因:

  • RAGFlow 虽然能力很强但是特别的重,它需要跑 Docker,启动一堆服务。
  • PrivateGPT 虽然相对轻量,但也需要一定的研究成本,且最重要的是,我希望能够进行高度的个性化定制。

因此,我用 electron 构建了一个 mac 原生的应用,其中的核心模块之一就是 MyGPT。目前,这个 MyGPT 已经完美实现了上述的个人知识库问答功能。未来,我还计划加入工具调用功能,从而实现真正的本地 Agent。

如上图所示,我可以问:“我今年的取暖费交了没,交了多少钱?”它不仅能精准地告诉我答案,还会列出原始文档的参考来源。点击这个参考来源,可以直接跳转到 Obsidian 的原始文档,这是许多其他 RAG 产品所无法做到的体验。

利用同样的方法,我也将吴军老师的一些内容制作成了知识库,作为我的第三方外部知识库加以利用。我可以在做问答的时候选择加载的知识库。

如何学习AI大模型 ?

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

👉1.大模型入门学习思维导图👈

要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。

对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
在这里插入图片描述

👉2.AGI大模型配套视频👈

很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。
在这里插入图片描述

在这里插入图片描述

👉3.大模型实际应用报告合集👈

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)

在这里插入图片描述

👉4.大模型实战项目&项目源码👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战项目来学习。(全套教程文末领取哈)
在这里插入图片描述

👉5.大模型经典学习电子书👈

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
在这里插入图片描述

👉6.大模型面试题&答案👈

截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)
在这里插入图片描述

为什么分享这些资料?

只要你是真心想学AI大模型,我这份资料就可以无偿分享给你学习,我国在这方面的相关人才比较紧缺,大模型行业确实也需要更多的有志之士加入进来,我也真心希望帮助大家学好这门技术,如果日后有什么学习上的问题,欢迎找我交流,有技术上面的问题,我是很愿意去帮助大家的!

这些资料真的有用吗?

这份资料由我和鲁为民博士共同整理,鲁为民博士先后获得了北京清华大学学士和美国加州理工学院博士学位,在包括IEEE Transactions等学术期刊和诸多国际会议上发表了超过50篇学术论文、取得了多项美国和中国发明专利,同时还斩获了吴文俊人工智能科学技术奖。目前我正在和鲁博士共同进行人工智能的研究。

资料内容涵盖了从入门到进阶的各类视频教程和实战项目,无论你是小白还是有些技术基础的,这份资料都绝对能帮助你提升薪资待遇,转行大模型岗位。

在这里插入图片描述
在这里插入图片描述

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)
Logo

有“AI”的1024 = 2048,欢迎大家加入2048 AI社区

更多推荐