CrewAI智能体开发:Qdrant 向量搜索工具
用于 CrewAI 智能体的 Qdrant 向量搜索工具的语义搜索功能。
概述
Qdrant 向量搜索工具通过利用向量相似性搜索引擎 Qdrant,为您的 CrewAI 智能体提供语义搜索功能。此工具允许您的智能体使用语义相似性在 Qdrant 集合中存储的文档中进行搜索。
安装安装所需的软件包
uv add qdrant-client
基本用法这是一个如何使用该工具的最小示例
from crewai import Agent
from crewai_tools import QdrantVectorSearchTool, QdrantConfig
# Initialize the tool with QdrantConfig
qdrant_tool = QdrantVectorSearchTool(
qdrant_config=QdrantConfig(
qdrant_url="your_qdrant_url",
qdrant_api_key="your_qdrant_api_key",
collection_name="your_collection"
)
)
# Create an agent that uses the tool
agent = Agent(
role="Research Assistant",
goal="Find relevant information in documents",
tools=[qdrant_tool]
)
# The tool will automatically use OpenAI embeddings
# and return the 3 most relevant results with scores > 0.35
完整的工作示例这是一个完整的示例,展示了如何
- 从 PDF 中提取文本
- 使用 OpenAI 生成嵌入
- 存储在 Qdrant 中
- 为语义搜索创建 CrewAI 智能体 RAG 工作流
import os
import uuid
import pdfplumber
from openai import OpenAI
from dotenv import load_dotenv
from crewai import Agent, Task, Crew, Process, LLM
from crewai_tools import QdrantVectorSearchTool
from qdrant_client import QdrantClient
from qdrant_client.models import PointStruct, Distance, VectorParams
# Load environment variables
load_dotenv()
# Initialize OpenAI client
client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
# Extract text from PDF
def extract_text_from_pdf(pdf_path):
text = []
with pdfplumber.open(pdf_path) as pdf:
for page in pdf.pages:
page_text = page.extract_text()
if page_text:
text.append(page_text.strip())
return text
# Generate OpenAI embeddings
def get_openai_embedding(text):
response = client.embeddings.create(
input=text,
model="text-embedding-3-large"
)
return response.data[0].embedding
# Store text and embeddings in Qdrant
def load_pdf_to_qdrant(pdf_path, qdrant, collection_name):
# Extract text from PDF
text_chunks = extract_text_from_pdf(pdf_path)
# Create Qdrant collection
if qdrant.collection_exists(collection_name):
qdrant.delete_collection(collection_name)
qdrant.create_collection(
collection_name=collection_name,
vectors_config=VectorParams(size=3072, distance=Distance.COSINE)
)
# Store embeddings
points = []
for chunk in text_chunks:
embedding = get_openai_embedding(chunk)
points.append(PointStruct(
id=str(uuid.uuid4()),
vector=embedding,
payload={"text": chunk}
))
qdrant.upsert(collection_name=collection_name, points=points)
# Initialize Qdrant client and load data
qdrant = QdrantClient(
url=os.getenv("QDRANT_URL"),
api_key=os.getenv("QDRANT_API_KEY")
)
collection_name = "example_collection"
pdf_path = "path/to/your/document.pdf"
load_pdf_to_qdrant(pdf_path, qdrant, collection_name)
# Initialize Qdrant search tool
from crewai_tools import QdrantConfig
qdrant_tool = QdrantVectorSearchTool(
qdrant_config=QdrantConfig(
qdrant_url=os.getenv("QDRANT_URL"),
qdrant_api_key=os.getenv("QDRANT_API_KEY"),
collection_name=collection_name,
limit=3,
score_threshold=0.35
)
)
# Create CrewAI agents
search_agent = Agent(
role="Senior Semantic Search Agent",
goal="Find and analyze documents based on semantic search",
backstory="""You are an expert research assistant who can find relevant
information using semantic search in a Qdrant database.""",
tools=[qdrant_tool],
verbose=True
)
answer_agent = Agent(
role="Senior Answer Assistant",
goal="Generate answers to questions based on the context provided",
backstory="""You are an expert answer assistant who can generate
answers to questions based on the context provided.""",
tools=[qdrant_tool],
verbose=True
)
# Define tasks
search_task = Task(
description="""Search for relevant documents about the {query}.
Your final answer should include:
- The relevant information found
- The similarity scores of the results
- The metadata of the relevant documents""",
agent=search_agent
)
answer_task = Task(
description="""Given the context and metadata of relevant documents,
generate a final answer based on the context.""",
agent=answer_agent
)
# Run CrewAI workflow
crew = Crew(
agents=[search_agent, answer_agent],
tasks=[search_task, answer_task],
process=Process.sequential,
verbose=True
)
result = crew.kickoff(
inputs={"query": "What is the role of X in the document?"}
)
print(result)
工具参数
必填参数
qdrant_config(QdrantConfig):包含所有 Qdrant 设置的配置对象
QdrantConfig 参数
qdrant_url(str):您的 Qdrant 服务器的 URLqdrant_api_key(str, 可选):用于 Qdrant 身份验证的 API 密钥collection_name(str):要搜索的 Qdrant 集合的名称limit(int):要返回的最大结果数(默认值:3)score_threshold(float):最小相似性分数阈值(默认值:0.35)filter(Any, 可选):用于高级过滤的 Qdrant Filter 实例(默认值:None)
可选工具参数
custom_embedding_fn(Callable[[str], list[float]]):用于文本向量化的自定义函数qdrant_package(str):Qdrant 的基本包路径(默认值:“qdrant_client”)client(Any):预初始化的 Qdrant 客户端(可选)
高级过滤QdrantVectorSearchTool 支持强大的过滤功能来优化您的搜索结果
动态过滤在搜索中使用 filter_by 和 filter_value 参数以动态过滤结果
# Agent will use these parameters when calling the tool
# The tool schema accepts filter_by and filter_value
# Example: search with category filter
# Results will be filtered where category == "technology"
使用 QdrantConfig 的预设过滤器对于复杂的过滤,请在您的配置中使用 Qdrant Filter 实例
from qdrant_client.http import models as qmodels
from crewai_tools import QdrantVectorSearchTool, QdrantConfig
# Create a filter for specific conditions
preset_filter = qmodels.Filter(
must=[
qmodels.FieldCondition(
key="category",
match=qmodels.MatchValue(value="research")
),
qmodels.FieldCondition(
key="year",
match=qmodels.MatchValue(value=2024)
)
]
)
# Initialize tool with preset filter
qdrant_tool = QdrantVectorSearchTool(
qdrant_config=QdrantConfig(
qdrant_url="your_url",
qdrant_api_key="your_key",
collection_name="your_collection",
filter=preset_filter # Preset filter applied to all searches
)
)
组合过滤器该工具自动将来自 QdrantConfig 的预设过滤器与来自 filter_by 和 filter_value 的动态过滤器组合在一起
# If QdrantConfig has a preset filter for category="research"
# And the search uses filter_by="year", filter_value=2024
# Both filters will be combined (AND logic)
搜索参数该工具在其架构中接受这些参数
query(str):用于查找相似文档的搜索查询filter_by(str, 可选):要过滤的元数据字段filter_value(Any, 可选):要过滤的值
返回格式该工具以 JSON 格式返回结果
[
{
"metadata": {
// Any metadata stored with the document
},
"context": "The actual text content of the document",
"distance": 0.95 // Similarity score
}
]
默认嵌入默认情况下,该工具使用 OpenAI 的 text-embedding-3-large 模型进行向量化。这需要
- 在环境中设置 OpenAI API 密钥:
OPENAI_API_KEY
自定义嵌入在以下情况下,您可能希望使用自己的嵌入函数而不是默认嵌入模型
- 想要使用不同的嵌入模型(例如,Cohere、HuggingFace、Ollama 模型)
- 需要通过使用开源嵌入模型来降低成本
- 对向量维度或嵌入质量有特定要求
- 想要使用特定领域的嵌入(例如,用于医学或法律文本)
这是一个使用 HuggingFace 模型的示例
from transformers import AutoTokenizer, AutoModel
import torch
# Load model and tokenizer
tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/all-MiniLM-L6-v2')
model = AutoModel.from_pretrained('sentence-transformers/all-MiniLM-L6-v2')
def custom_embeddings(text: str) -> list[float]:
# Tokenize and get model outputs
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
outputs = model(**inputs)
# Use mean pooling to get text embedding
embeddings = outputs.last_hidden_state.mean(dim=1)
# Convert to list of floats and return
return embeddings[0].tolist()
# Use custom embeddings with the tool
from crewai_tools import QdrantConfig
tool = QdrantVectorSearchTool(
qdrant_config=QdrantConfig(
qdrant_url="your_url",
qdrant_api_key="your_key",
collection_name="your_collection"
),
custom_embedding_fn=custom_embeddings # Pass your custom function
)
错误处理该工具处理这些特定错误
- 如果未安装
qdrant-client,则引发 ImportError(可选择自动安装) - 如果未设置
QDRANT_URL,则引发 ValueError - 如果缺少
qdrant-client,则提示使用uv add qdrant-client安装
环境变量所需环境变量
export QDRANT_URL="your_qdrant_url" # If not provided in constructor
export QDRANT_API_KEY="your_api_key" # If not provided in constructor
export OPENAI_API_KEY="your_openai_key" # If using default embeddings
《动手学PyTorch建模与应用:从深度学习到大模型》是一本从零基础上手深度学习和大模型的PyTorch实战指南。全书共11章,前6章涵盖深度学习基础,包括张量运算、神经网络原理、数据预处理及卷积神经网络等;后5章进阶探讨图像、文本、音频建模技术,并结合Transformer架构解析大语言模型的开发实践。书中通过房价预测、图像分类等案例讲解模型构建方法,每章附有动手练习题,帮助读者巩固实战能力。内容兼顾数学原理与工程实现,适配PyTorch框架最新技术发展趋势。

更多推荐



所有评论(0)