Agent建模方法

在AnyLogic中,Agent建模方法是一种强大的技术,用于模拟复杂系统中的个体行为及其相互作用。Agent建模方法的核心思想是将系统中的每个个体视为一个独立的代理(Agent),每个代理都有自己的状态、行为和决策规则。通过定义这些代理及其交互规则,可以构建出高度复杂的仿真模型,从而更好地理解和预测系统的动态行为。

1. Agent的基本概念

1.1 什么是Agent

Agent是AnyLogic中用于表示系统中具有自主行为的个体的基本单元。每个Agent可以拥有自己的状态、属性、方法和事件。Agent可以与其他Agent或环境进行交互,从而形成复杂的系统行为。Agent的典型应用包括模拟人群、车辆、动物、企业等。

1.2 Agent的属性和方法

1.2.1 属性

Agent的属性是用于描述Agent状态的变量。这些属性可以是数值型、布尔型、字符串型或自定义类型。例如,一个模拟人群的Agent可能包含以下属性:

  • age:年龄

  • gender:性别

  • position:当前位置

  • velocity:速度

  • destination:目标位置

1.2.2 方法

Agent的方法是用于定义其行为的函数。这些方法可以包括初始化、移动、决策等。例如,一个模拟人群的Agent可能包含以下方法:

  • initialize():初始化Agent的状态

  • move():移动到目标位置

  • decideNextDestination():决定下一个目标位置

1.3 Agent的事件

Agent的事件是用于触发特定行为的机制。事件可以是定时事件、条件事件或外部事件。例如,一个模拟人群的Agent可能包含以下事件:

  • onEnterRoom():进入房间时触发的事件

  • onLeaveRoom():离开房间时触发的事件

  • onTimer():定时触发的事件,用于定期更新Agent的状态

2. 创建和管理Agent

2.1 创建Agent类

在AnyLogic中,创建Agent类通常涉及以下步骤:

  1. 打开AnyLogic并创建一个新的模型。

  2. 在模型中添加一个新的Agent类。

  3. 定义Agent类的属性、方法和事件。

2.1.1 示例:创建一个模拟人群的Agent类

假设我们正在创建一个模拟人群的Agent类,名为Person。以下是创建Person类的步骤:


// 定义Person类

public class Person extends Agent {

    // 定义属性

    private double age;

    private String gender;

    private Point position;

    private double velocity;

    private Point destination;



    // 定义方法

    public void initialize(double age, String gender, Point position, double velocity, Point destination) {

        this.age = age;

        this.gender = gender;

        this.position = position;

        this.velocity = velocity;

        this.destination = destination;

    }



    public void move() {

        // 计算新的位置

        position = new Point(position.getX() + velocity * (destination.getX() - position.getX()),

                            position.getY() + velocity * (destination.getY() - position.getY()));

    }



    public void decideNextDestination(List<Point> possibleDestinations) {

        // 随机选择下一个目标位置

        destination = possibleDestinations.get(uniform(0, possibleDestinations.size() - 1));

    }



    // 定义事件

    public void onEnterRoom(Room room) {

        // 进入房间时的行为

        System.out.println("Person " + this.getId() + " entered " + room.getName());

    }



    public void onLeaveRoom(Room room) {

        // 离开房间时的行为

        System.out.println("Person " + this.getId() + " left " + room.getName());

    }



    public void onTimer() {

        // 定时更新Agent的状态

        this.move();

    }

}

2.2 管理Agent实例

在AnyLogic中,可以通过创建Agent集合来管理多个Agent实例。Agent集合可以是静态的或动态的,具体取决于模型的需求。

2.2.1 创建Agent集合

// 定义Agent集合

public class Main extends Agent {

    private List<Person> people;



    public void createPeople(int count, List<Point> possibleDestinations) {

        people = new ArrayList<>();

        for (int i = 0; i < count; i++) {

            double age = uniform(18, 60);

            String gender = uniform(0, 1) < 0.5 ? "Male" : "Female";

            Point position = new Point(uniform(0, 100), uniform(0, 100));

            double velocity = uniform(1, 5);

            Point destination = possibleDestinations.get(uniform(0, possibleDestinations.size() - 1));



            Person person = new Person();

            person.initialize(age, gender, position, velocity, destination);

            people.add(person);

        }

    }



    public void startSimulation() {

        // 启动定时器,每秒更新一次所有Agent的状态

        addEvent(new Event() {

            @Override

            public void action() {

                for (Person person : people) {

                    person.onTimer();

                }

            }

        });

    }

}

2.3 Agent的初始化

Agent的初始化通常在模型的主类中进行。通过初始化,可以设置Agent的初始状态,包括属性和位置。

2.3.1 示例:初始化Agent集合

public class Main extends Agent {

    private List<Person> people;

    private List<Point> possibleDestinations;



    public void initialize() {

        // 定义可能的目标位置

        possibleDestinations = Arrays.asList(

            new Point(50, 50),

            new Point(70, 70),

            new Point(30, 30)

        );



        // 创建100个Person实例

        createPeople(100, possibleDestinations);



        // 启动仿真

        startSimulation();

    }

}

3. Agent之间的交互

3.1 交互机制

Agent之间的交互可以通过消息传递、共享资源或直接方法调用等方式实现。在AnyLogic中,常用的消息传递机制包括事件触发和消息队列。

3.1.1 消息传递

消息传递是一种常见的Agent交互方式。通过发送和接收消息,Agent可以与其他Agent进行通信。

3.2 示例:Agent之间的消息传递

假设我们有一个模拟交通的模型,其中包含两个Agent类:CarTrafficLightCar需要根据TrafficLight的信号决定是否停止或继续行驶。


// 定义Car类

public class Car extends Agent {

    private Point position;

    private double velocity;

    private TrafficLight currentTrafficLight;



    public void initialize(Point position, double velocity, TrafficLight currentTrafficLight) {

        this.position = position;

        this.velocity = velocity;

        this.currentTrafficLight = currentTrafficLight;

    }



    public void move() {

        if (currentTrafficLight != null && currentTrafficLight.isRed()) {

            // 如果当前交通灯是红灯,停止

            velocity = 0;

        } else {

            // 否则,继续行驶

            position = new Point(position.getX() + velocity, position.getY());

        }

    }



    public void onTimer() {

        this.move();

    }

}



// 定义TrafficLight类

public class TrafficLight extends Agent {

    private boolean isRed;



    public void initialize(boolean isRed) {

        this.isRed = isRed;

    }



    public boolean isRed() {

        return isRed;

    }



    public void toggleLight() {

        isRed = !isRed;

    }



    public void onTimer() {

        // 每10秒切换一次交通灯

        if (getEngine().getElapsedTime() % 10 == 0) {

            toggleLight();

        }

    }

}



// 定义主类

public class Main extends Agent {

    private List<Car> cars;

    private TrafficLight trafficLight;



    public void initialize() {

        // 初始化交通灯

        trafficLight = new TrafficLight();

        trafficLight.initialize(true);



        // 创建10个Car实例

        cars = new ArrayList<>();

        for (int i = 0; i < 10; i++) {

            Point position = new Point(uniform(0, 100), 0);

            double velocity = uniform(1, 5);

            Car car = new Car();

            car.initialize(position, velocity, trafficLight);

            cars.add(car);

        }



        // 启动仿真

        startSimulation();

    }



    public void startSimulation() {

        // 启动交通灯的定时器

        trafficLight.addEvent(new Event() {

            @Override

            public void action() {

                trafficLight.onTimer();

            }

        });



        // 启动所有Car的定时器

        for (Car car : cars) {

            car.addEvent(new Event() {

                @Override

                public void action() {

                    car.onTimer();

                }

            });

        }

    }

}

4. Agent与环境的交互

4.1 环境的概念

环境是指Agent所处的外部条件和资源。在AnyLogic中,环境可以通过地理空间、网络、数据库等方式表示。Agent可以与环境进行交互,从而影响其行为。

4.2 示例:Agent与地理空间的交互

假设我们有一个模拟森林火灾的模型,其中包含两个Agent类:FireTreeFire可以传播到周围的Tree,而Tree可以被Fire点燃或扑灭。


// 定义Tree类

public class Tree extends Agent {

    private Point position;

    private boolean isBurning;



    public void initialize(Point position) {

        this.position = position;

        this.isBurning = false;

    }



    public boolean isBurning() {

        return isBurning;

    }



    public void setBurning(boolean isBurning) {

        this.isBurning = isBurning;

    }



    public Point getPosition() {

        return position;

    }

}



// 定义Fire类

public class Fire extends Agent {

    private Point position;

    private double spreadRate;



    public void initialize(Point position, double spreadRate) {

        this.position = position;

        this.spreadRate = spreadRate;

    }



    public void spread(List<Tree> trees) {

        for (Tree tree : trees) {

            double distance = position.distanceTo(tree.getPosition());

            if (distance < spreadRate && !tree.isBurning()) {

                tree.setBurning(true);

            }

        }

    }



    public void onTimer() {

        this.spread();

    }

}



// 定义主类

public class Main extends Agent {

    private List<Tree> trees;

    private Fire fire;



    public void initialize() {

        // 创建100个Tree实例

        trees = new ArrayList<>();

        for (int i = 0; i < 100; i++) {

            Point position = new Point(uniform(0, 100), uniform(0, 100));

            Tree tree = new Tree();

            tree.initialize(position);

            trees.add(tree);

        }



        // 初始化Fire

        fire = new Fire();

        fire.initialize(new Point(50, 50), 10);



        // 启动仿真

        startSimulation();

    }



    public void startSimulation() {

        // 启动Fire的定时器

        fire.addEvent(new Event() {

            @Override

            public void action() {

                fire.onTimer();

            }

        });



        // 定期检查树的状态

        addEvent(new Event() {

            @Override

            public void action() {

                for (Tree tree : trees) {

                    if (tree.isBurning()) {

                        System.out.println("Tree at " + tree.getPosition().toString() + " is burning.");

                    }

                }

            }

        });

    }

}

5. Agent建模的高级技巧

5.1 动态Agent生成

动态Agent生成是指在仿真过程中根据特定条件或事件生成新的Agent。这可以通过定时事件或条件事件来实现。

5.1.1 示例:动态生成新的Car

假设我们有一个模拟交通流量的模型,每分钟生成新的Car实例。


// 定义Car类

public class Car extends Agent {

    private Point position;

    private double velocity;

    private TrafficLight currentTrafficLight;



    public void initialize(Point position, double velocity, TrafficLight currentTrafficLight) {

        this.position = position;

        this.velocity = velocity;

        this.currentTrafficLight = currentTrafficLight;

    }



    public void move() {

        if (currentTrafficLight != null && currentTrafficLight.isRed()) {

            velocity = 0;

        } else {

            position = new Point(position.getX() + velocity, position.getY());

        }

    }



    public void onTimer() {

        this.move();

    }

}



// 定义TrafficLight类

public class TrafficLight extends Agent {

    private boolean isRed;



    public void initialize(boolean isRed) {

        this.isRed = isRed;

    }



    public boolean isRed() {

        return isRed;

    }



    public void toggleLight() {

        isRed = !isRed;

    }



    public void onTimer() {

        if (getEngine().getElapsedTime() % 10 == 0) {

            toggleLight();

        }

    }

}



// 定义主类

public class Main extends Agent {

    private List<Car> cars;

    private TrafficLight trafficLight;



    public void initialize() {

        // 初始化交通灯

        trafficLight = new TrafficLight();

        trafficLight.initialize(true);



        // 创建初始的10个Car实例

        cars = new ArrayList<>();

        for (int i = 0; i < 10; i++) {

            Point position = new Point(uniform(0, 100), 0);

            double velocity = uniform(1, 5);

            Car car = new Car();

            car.initialize(position, velocity, trafficLight);

            cars.add(car);

        }



        // 启动仿真

        startSimulation();

    }



    public void startSimulation() {

        // 启动交通灯的定时器

        trafficLight.addEvent(new Event() {

            @Override

            public void action() {

                trafficLight.onTimer();

            }

        });



        // 启动所有Car的定时器

        for (Car car : cars) {

            car.addEvent(new Event() {

                @Override

                public void action() {

                    car.onTimer();

                }

            });

        }



        // 每分钟生成新的Car

        addEvent(new Event() {

            @Override

            public void action() {

                Point position = new Point(uniform(0, 100), 0);

                double velocity = uniform(1, 5);

                Car car = new Car();

                car.initialize(position, velocity, trafficLight);

                cars.add(car);

            }

        });

    }

}

5.2 Agent的分层建模

分层建模是指将Agent分为不同的层次,每个层次的Agent具有不同的复杂度和功能。这可以提高模型的可读性和可维护性。

5.2.1 示例:分层建模模拟城市交通

假设我们有一个模拟城市交通的模型,包含三个层次的Agent:DriverCarTrafficLight


// 定义Driver类

public class Driver extends Agent {

    private Car car;

    private List<Point> destinations;



    public void initialize(Car car, List<Point> destinations) {

        this.car = car;

        this.destinations = destinations;

    }



    public void decideNextDestination() {

        Point nextDestination = destinations.get(uniform(0, destinations.size() - 1));

        car.setDestination(nextDestination);

    }



    public void onTimer() {

        this.decideNextDestination();

    }

}



// 定义Car类

public class Car extends Agent {

    private Point position;

    private double velocity;

    private Point destination;

    private TrafficLight currentTrafficLight;



    public void initialize(Point position, double velocity, TrafficLight currentTrafficLight) {

        this.position = position;

        this.velocity = velocity;

        this.currentTrafficLight = currentTrafficLight;

    }



    public void setDestination(Point destination) {

        this.destination = destination;

    }



    public void move() {

        if (currentTrafficLight != null && currentTrafficLight.isRed()) {

            velocity = 0;

        } else {

            position = new Point(position.getX() + velocity * (destination.getX() - position.getX()),

                                position.getY() + velocity * (destination.getY() - position.getY()));

        }

    }



    public void onTimer() {

        this.move();

    }

}



// 定义TrafficLight类

public class TrafficLight extends Agent {

    private boolean isRed;



    public void initialize(boolean isRed) {

        this.isRed = isRed;

    }



    public boolean isRed() {

        return isRed;

    }



    public void toggleLight() {

        isRed = !isRed;

    }



    public void onTimer() {

        if (getEngine().getElapsedTime() % 10 == 0) {

            toggleLight();

        }

    }

}



// 定义主类

public class Main extends Agent {

    private List<Driver> drivers;

    private List<Car> cars;

    private TrafficLight trafficLight;



    public void initialize() {

        // 初始化交通灯

        trafficLight = new TrafficLight();

        trafficLight.initialize(true);



        // 创建10个Car实例

        cars = new ArrayList<>();

        for (int i = 0; i < 10; i++) {

            Point position = new Point(uniform(0, 100), 0);

            double velocity = uniform(1, 5);

            Car car = new Car();

            car.initialize(position, velocity, trafficLight);

            cars.add(car);

        }



        // 创建10个Driver实例

        drivers = new ArrayList<>();

        for (int i = 0; i < 10; i++) {

            Car car = cars.get(i);

            List<Point> destinations = Arrays.asList(

                new Point(50, 50),

                new Point(70, 70),

                new Point(30, 30)

            );

            Driver driver = new Driver();

            driver.initialize(car, destinations);

            drivers.add(driver);

        }



        // 启动仿真

        startSimulation();

    }



    public void startSimulation() {

        // 启动交通灯的定时器

        trafficLight.addEvent(new Event() {

            @Override

            public void action() {

                trafficLight.onTimer();

            }

        });



        // 启动所有Car的定时器

        for (Car car : cars) {

           ```java

// 定义主类

public class Main extends Agent {

    private List<Driver> drivers;

    private List<Car> cars;

    private TrafficLight trafficLight;



    public void initialize() {

        // 初始化交通灯

        trafficLight = new TrafficLight();

        trafficLight.initialize(true);



        // 创建10个Car实例

        cars = new ArrayList<>();

        for (int i = 0; i < 10; i++) {

            Point position = new Point(uniform(0, 100), 0);

            double velocity = uniform(1, 5);

            Car car = new Car();

            car.initialize(position, velocity, trafficLight);

            cars.add(car);

        }



        // 创建10个Driver实例

        drivers = new ArrayList<>();

        for (int i = 0; i < 10; i++) {

            Car car = cars.get(i);

            List<Point> destinations = Arrays.asList(

                new Point(50, 50),

                new Point(70, 70),

                new Point(30, 30)

            );

            Driver driver = new Driver();

            driver.initialize(car, destinations);

            drivers.add(driver);

        }



        // 启动仿真

        startSimulation();

    }



    public void startSimulation() {

        // 启动交通灯的定时器

        trafficLight.addEvent(new Event() {

            @Override

            public void action() {

                trafficLight.onTimer();

            }

        });



        // 启动所有Car的定时器

        for (Car car : cars) {

            car.addEvent(new Event() {

                @Override

                public void action() {

                    car.onTimer();

                }

            });

        }



        // 启动所有Driver的定时器

        for (Driver driver : drivers) {

            driver.addEvent(new Event() {

                @Override

                public void action() {

                    driver.onTimer();

                }

            });

        }

    }

}

5.3 Agent的状态管理

Agent的状态管理是指在仿真过程中动态地改变Agent的状态。这可以通过状态图、事件和条件语句来实现。状态图是一种可视化工具,用于定义Agent的状态及其转换规则。

5.3.1 示例:使用状态图管理Car的状态

假设我们有一个模拟交通流量的模型,其中Car有三种状态:MovingStoppedArrived。Car的状态转换规则如下:

  • 当交通灯是红灯时,Car从Moving状态转换到Stopped状态。

  • 当交通灯变为绿灯时,Car从Stopped状态转换到Moving状态。

  • 当Car到达目标位置时,从Moving状态转换到Arrived状态。


// 定义Car类

public class Car extends Agent {

    private Point position;

    private double velocity;

    private Point destination;

    private TrafficLight currentTrafficLight;

    private State state;



    public enum State {

        MOVING, STOPPED, ARRIVED

    }



    public void initialize(Point position, double velocity, TrafficLight currentTrafficLight) {

        this.position = position;

        this.velocity = velocity;

        this.currentTrafficLight = currentTrafficLight;

        this.state = State.MOVING;

    }



    public void setDestination(Point destination) {

        this.destination = destination;

    }



    public void move() {

        if (state == State.MOVING) {

            if (currentTrafficLight != null && currentTrafficLight.isRed()) {

                state = State.STOPPED;

                velocity = 0;

            } else {

                position = new Point(position.getX() + velocity * (destination.getX() - position.getX()),

                                    position.getY() + velocity * (destination.getY() - position.getY()));

                if (position.distanceTo(destination) < 1) {

                    state = State.ARRIVED;

                }

            }

        } else if (state == State.STOPPED) {

            if (currentTrafficLight != null && !currentTrafficLight.isRed()) {

                state = State.MOVING;

                velocity = uniform(1, 5);

            }

        }

    }



    public void onTimer() {

        this.move();

    }

}

5.4 Agent的决策规则

Agent的决策规则是指Agent在面对不同情况时的决策逻辑。这些规则可以基于简单的条件语句,也可以使用复杂的算法,如机器学习模型。

5.4.1 示例:基于条件语句的决策规则

假设我们有一个模拟人群疏散的模型,其中Person需要根据周围环境的危险程度来决定是否加快速度或改变方向。


// 定义Person类

public class Person extends Agent {

    private double age;

    private String gender;

    private Point position;

    private double velocity;

    private Point destination;



    public void initialize(double age, String gender, Point position, double velocity, Point destination) {

        this.age = age;

        this.gender = gender;

        this.position = position;

        this.velocity = velocity;

        this.destination = destination;

    }



    public void move() {

        // 检查周围环境的危险程度

        double dangerLevel = checkDangerLevel(position);



        if (dangerLevel > 0.5) {

            // 如果危险程度高,加快速度

            velocity = Math.min(velocity * 1.5, 10);

        } else {

            // 否则,保持正常速度

            position = new Point(position.getX() + velocity * (destination.getX() - position.getX()),

                                position.getY() + velocity * (destination.getY() - position.getY()));

        }

    }



    private double checkDangerLevel(Point position) {

        // 模拟危险程度检测

        return uniform(0, 1);

    }



    public void onTimer() {

        this.move();

    }

}

5.5 Agent的自适应行为

Agent的自适应行为是指Agent能够根据环境的变化或历史数据调整其行为。这可以通过学习算法或自适应规则来实现。

5.5.1 示例:自适应行为的Agent

假设我们有一个模拟商场顾客的模型,Customer可以根据过去的购物体验选择不同的商店。


// 定义Customer类

public class Customer extends Agent {

    private Point position;

    private double satisfaction;

    private Map<Shop, Double> shopSatisfaction;



    public void initialize(Point position, Map<Shop, Double> shopSatisfaction) {

        this.position = position;

        this.satisfaction = 0.5; // 初始满意度

        this.shopSatisfaction = shopSatisfaction;

    }



    public void chooseShop(List<Shop> shops) {

        // 根据过去的满意度选择商店

        double maxSatisfaction = 0;

        Shop chosenShop = null;

        for (Shop shop : shops) {

            double satisfaction = shopSatisfaction.getOrDefault(shop, 0.5);

            if (satisfaction > maxSatisfaction) {

                maxSatisfaction = satisfaction;

                chosenShop = shop;

            }

        }

        if (chosenShop != null) {

            destination = chosenShop.getPosition();

            System.out.println("Customer " + this.getId() + " chose shop " + chosenShop.getId());

        }

    }



    public void move() {

        // 移动到目标商店

        position = new Point(position.getX() + velocity * (destination.getX() - position.getX()),

                            position.getY() + velocity * (destination.getY() - position.getY()));

    }



    public void updateSatisfaction(Shop shop, double newSatisfaction) {

        // 更新对特定商店的满意度

        shopSatisfaction.put(shop, newSatisfaction);

    }



    public void onTimer() {

        this.chooseShop(shops);

        this.move();

    }

}



// 定义Shop类

public class Shop extends Agent {

    private Point position;

    private double serviceQuality;



    public void initialize(Point position, double serviceQuality) {

        this.position = position;

        this.serviceQuality = serviceQuality;

    }



    public Point getPosition() {

        return position;

    }



    public double getServiceQuality() {

        return serviceQuality;

    }

}



// 定义主类

public class Main extends Agent {

    private List<Customer> customers;

    private List<Shop> shops;



    public void initialize() {

        // 创建10个Shop实例

        shops = new ArrayList<>();

        for (int i = 0; i < 10; i++) {

            Point position = new Point(uniform(0, 100), uniform(0, 100));

            double serviceQuality = uniform(0, 1);

            Shop shop = new Shop();

            shop.initialize(position, serviceQuality);

            shops.add(shop);

        }



        // 创建100个Customer实例

        customers = new ArrayList<>();

        for (int i = 0; i < 100; i++) {

            Point position = new Point(uniform(0, 100), uniform(0, 100));

            Map<Shop, Double> shopSatisfaction = new HashMap<>();

            for (Shop shop : shops) {

                shopSatisfaction.put(shop, uniform(0, 1));

            }

            Customer customer = new Customer();

            customer.initialize(position, shopSatisfaction);

            customers.add(customer);

        }



        // 启动仿真

        startSimulation();

    }



    public void startSimulation() {

        // 启动所有Customer的定时器

        for (Customer customer : customers) {

            customer.addEvent(new Event() {

                @Override

                public void action() {

                    customer.onTimer();

                }

            });

        }



        // 定期更新顾客的满意度

        addEvent(new Event() {

            @Override

            public void action() {

                for (Customer customer : customers) {

                    if (customer.getPosition().distanceTo(customer.getDestination()) < 1) {

                        Shop shop = shops.stream()

                            .filter(s -> s.getPosition().equals(customer.getDestination()))

                            .findFirst()

                            .orElse(null);

                        if (shop != null) {

                            double newSatisfaction = uniform(shop.getServiceQuality() - 0.1, shop.getServiceQuality() + 0.1);

                            customer.updateSatisfaction(shop, newSatisfaction);

                        }

                    }

                }

            }

        });

    }

}

5.6 Agent的集合和群体行为

Agent的集合和群体行为是指多个Agent作为一个整体进行交互和协作。这可以通过集合操作、群体算法或社交网络来实现。

5.6.1 示例:模拟鸟群的群体行为

假设我们有一个模拟鸟群的模型,其中Bird需要根据周围其他鸟的位置和速度来调整自己的飞行方向和速度。


// 定义Bird类

public class Bird extends Agent {

    private Point position;

    private Point velocity;

    private List<Bird> neighbors;



    public void initialize(Point position, Point velocity) {

        this.position = position;

        this.velocity = velocity;

    }



    public void updateNeighbors(List<Bird> allBirds) {

        this.neighbors = allBirds.stream()

            .filter(b -> b != this && b.getPosition().distanceTo(this.position) < 20)

            .collect(Collectors.toList());

    }



    public void move() {

        if (!neighbors.isEmpty()) {

            Point avgPosition = neighbors.stream()

                .map(Bird::getPosition)

                .reduce(Point::add)

                .map(p -> p.scale(1.0 / neighbors.size()))

                .orElse(position);



            Point avgVelocity = neighbors.stream()

                .map(Bird::getVelocity)

                .reduce(Point::add)

                .map(p -> p.scale(1.0 / neighbors.size()))

                .orElse(velocity);



            // 调整位置和速度

            position = new Point(position.getX() + velocity.getX(), position.getY() + velocity.getY());

            velocity = new Point(velocity.getX() + (avgPosition.getX() - position.getX()) * 0.01,

                                velocity.getY() + (avgPosition.getY() - position.getY()) * 0.01);

        } else {

            position = new Point(position.getX() + velocity.getX(), position.getY() + velocity.getY());

        }

    }



    public Point getPosition() {

        return position;

    }



    public Point getVelocity() {

        return velocity;

    }



    public void onTimer() {

        this.move();

    }

}



// 定义主类

public class Main extends Agent {

    private List<Bird> birds;



    public void initialize() {

        // 创建100个Bird实例

        birds = new ArrayList<>();

        for (int i = 0; i < 100; i++) {

            Point position = new Point(uniform(0, 100), uniform(0, 100));

            Point velocity = new Point(uniform(-1, 1), uniform(-1, 1));

            Bird bird = new Bird();

            bird.initialize(position, velocity);

            birds.add(bird);

        }



        // 启动仿真

        startSimulation();

    }



    public void startSimulation() {

        // 定期更新每个Bird的邻居和移动

        addEvent(new Event() {

            @Override

            public void action() {

                for (Bird bird : birds) {

                    bird.updateNeighbors(birds);

                    bird.onTimer();

                }

            }

        });

    }

}

6. 总结

Agent建模方法在AnyLogic中提供了强大的工具,用于模拟复杂系统中的个体行为及其相互作用。通过定义Agent的属性、方法和事件,可以构建出高度复杂的仿真模型。此外,动态Agent生成、分层建模、状态管理、决策规则和自适应行为等高级技巧,可以进一步增强模型的复杂性和准确性。希望本文档能帮助你更好地理解和应用Agent建模方法。

在这里插入图片描述

Logo

有“AI”的1024 = 2048,欢迎大家加入2048 AI社区

更多推荐