Intelligence Sets Sail for a Shared Future

北航、人大和九坤投资共同撰写的论文 《Scaling Laws for Code: Every Programming Language Matters》 整理而成。

在代码大模型(Code LLMs)的预训练中,行业内长期存在一种惯性思维,即把所有编程语言的代码都视为同质化的文本数据,主要关注数据总量的堆叠。然而,现代软件开发本质上是多语言混合的,不同语言的语法特性、语料规模和应用场景差异巨大。如果忽略这些差异,笼统地应用通用的 Scaling Laws,往往会导致性能预测偏差和算力浪费。

为了打破这一黑盒,研究团队耗费了相当于 33.6 万个 H800 GPU 时,进行了超过 1000 次实验。研究覆盖了从 0.2B 到 14B 的模型参数规模,以及高达 1T 的训练数据量,系统性地对 Python、Java、JavaScript、TypeScript、C#、Go、Rust 这七种主流语言进行了解构。这项工作的核心贡献在于建立了区分语言特性的 Scaling Laws,并据此提出了一套数学可解的最优数据配比方案。

  • 论文:《Scaling Laws for Code: Every Programming Language Matters》
  • 论文链接:https://arxiv.org/abs/2512.13472

图 1:论文提出的多语言 Scaling Law 与传统均匀分布基线的 Loss 对比。蓝色曲线显示,基于本文方法优化的模型在相同算力下能持续获得更低的 Loss)

语言特异性:Python 潜力巨大,Rust 快速收敛

研究首先挑战了 “所有语言生而平等” 的假设。通过为每种语言单独拟合 Chinchilla 风格的 Scaling Law 公式,作者发现不同语言的训练动力学存在显著差异。

具体而言,以 Python 为代表的动态解释型语言表现出更高的 Scaling 指数(),这意味着随着模型参数量的增加和训练数据的扩充,Python 的性能提升幅度最大,尚未触及天花板,属于 “吃算力、吃数据” 的类型。相反,以 Rust 为代表的强类型编译型语言,由于其严格的语法约束和内存安全规则,模型能更快地掌握其模式,在较小的规模下即可达到较低的 Loss,但也意味着它更容易进入性能饱和期,边际收益递减较快。

此外,论文还引入了 “不可约 Loss”( )来量化语言的内在复杂度。结果显示各语言的内在可预测性排序为:C# < Java ≈ Rust < Go < TypeScript < JavaScript < Python。C# 因其高度标准化的语法和生态,是 “最容易预测” 的语言;而 Python 由于其极高的灵活性和多样的表达方式,内在熵值最高,对模型来说最难完全 “学透”。

图 2:七种编程语言各自独立的 Scaling Law 曲线。可以看到 Python(左上)的曲线斜率更陡峭,而 Rust(右下)则更早趋于平缓)

协同效应矩阵:语言间的 “近亲繁殖” 与 “非对称互助”

在实际预训练中,我们很少只训练单语言模型。那么,混合多种语言训练是否存在 “协同效应”(Synergy)?研究团队构建了一个详尽的协同增益矩阵,量化了引入辅助语言对目标语言性能的影响。

实验发现,绝大多数语言都能从多语言混合训练中获益,且收益大小与语法相似度高度相关。例如,Java 与 C#、JavaScript 与 TypeScript 这类语法结构高度相似的语言对,在混合训练时表现出极强的正向迁移效果。

更有趣的是,这种迁移往往是非对称的。Java 是多语言训练的最大受益者,几乎与任何语言混合都能大幅降低其 Loss,这可能是因为 Java 作为成熟的面向对象语言,能从其他语言的范式中汲取通用逻辑。而 Python 虽然是代码领域的通用 “供体”(帮助其他语言提升),但其自身从其他语言获得的收益却相对有限,甚至在某些混合比例下会出现轻微的负迁移。这一发现提示我们,在构建语料库时需要精细设计混合策略,而非盲目地 “大杂烩”。

表 1:协同增益矩阵。红色越深代表辅助语言(列)对目标语言(行)的提升越大。Java 所在的行显示出它能从所有辅助语言中获得显著收益)

跨语言对齐策略:并行配对激发 Zero-Shot 能力

除了单语言生成,跨语言翻译(如 Java 转 Python)也是代码模型的重要能力。论文对比了两种数据组织策略:传统的 “随机打乱”(Random Shuffling)和 “并行配对”(Parallel Pairing)—— 即将一段代码与其翻译版本拼接在同一个 Context 中输入模型。

实验结果表明,并行配对策略在所有模型规模上均显著优于基线。这种策略实际上利用了模型的长上下文窗口,构建了隐式的文档级对齐信号。更关键的是,这种策略激发了模型在 Zero-Shot(零样本)方向上的泛化能力。例如,模型仅训练了 Python↔Java 和 Python↔Go 的配对数据,但在测试从未见过的 Java↔Go 翻译任务时,基于并行配对训练的模型表现出了惊人的组合泛化能力。这证明了通过构建以 Python 为枢纽的平行语料,可以有效拉齐不同编程语言的向量空间。

图 4:三种策略在跨语言翻译任务上的表现对比。绿色线条代表的并行配对策略(Prompt-based Concatenation)在各方向上均取得最低 Loss)

最优 Token 分配指南:基于边际效用的经济学

基于上述发现,论文提出了 “科学配比的多语言 Scaling Law”(Proportion-dependent Multilingual Scaling Law)。这不仅是一个理论公式,更是一套指导算力投资的行动指南。

在总算力固定的约束下,传统的均匀分配并非最优解。最优策略应遵循边际效用最大化原则:

  1. 重仓高潜力语言:大幅增加 Python 的 Token 占比,因为它的 Scaling 指数高,投入更多数据能带来持续的性能爬坡。
  2. 平衡高协同组合:利用 JavaScript 和 TypeScript 的互补性,保持两者适度的比例以最大化协同增益。
  3. 削减早熟语言投入:适当减少 Rust 和 Go 的数据占比。因为它们收敛快,过多的数据投入只会带来边际收益的快速衰减,不如将这部分算力转移给更难学的语言。

实验验证显示,采用这种 “引导式分配” 策略训练出的 1.5B 模型,在多语言代码生成(MultiPL-E)和翻译任务上,均稳定优于均匀分配的基线模型,且没有任何一种语言因数据减少而出现显著的性能退化。

图 5:基线策略 vs 优化后的 Token 分配方案。基于 Scaling Law 的建议大幅增加了 Python(蓝色)的占比,同时削减了 Rust(橙色)和 Go(青色)的占比)

总结与启示

这项工作是代码大模型领域一次重要的 “去魅” 过程。它用详实的数据证明,编程语言在模型训练的视角下绝非同质。

对于致力于训练 Code LLM 的团队而言,这意味着数据工程的重点应从单纯的 “清洗与去重” 转向更宏观的 “成分配比”。理解不同语言的 Scaling 特性(是像 Python 一样潜力巨大,还是像 Rust 一样迅速饱和)以及它们之间的协同关系,能够帮助我们在有限的算力预算下,训练出综合代码能力更强的基座模型。这不仅是算法的优化,更是资源配置效率的提升。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线科技企业深耕十二载,见证过太多因技术卡位而跃迁的案例。那些率先拥抱 AI 的同事,早已在效率与薪资上形成代际优势,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在大模型的学习中的很多困惑。我们整理出这套 AI 大模型突围资料包

  • ✅ 从零到一的 AI 学习路径图
  • ✅ 大模型调优实战手册(附医疗/金融等大厂真实案例)
  • ✅ 百度/阿里专家闭门录播课
  • ✅ 大模型当下最新行业报告
  • ✅ 真实大厂面试真题
  • ✅ 2025 最新岗位需求图谱

所有资料 ⚡️ ,朋友们如果有需要 《AI大模型入门+进阶学习资源包》下方扫码获取~
在这里插入图片描述

① 全套AI大模型应用开发视频教程

(包含提示工程、RAG、LangChain、Agent、模型微调与部署、DeepSeek等技术点)
在这里插入图片描述

② 大模型系统化学习路线

作为学习AI大模型技术的新手,方向至关重要。 正确的学习路线可以为你节省时间,少走弯路;方向不对,努力白费。这里我给大家准备了一份最科学最系统的学习成长路线图和学习规划,带你从零基础入门到精通!
在这里插入图片描述

③ 大模型学习书籍&文档

学习AI大模型离不开书籍文档,我精选了一系列大模型技术的书籍和学习文档(电子版),它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。
在这里插入图片描述

④ AI大模型最新行业报告

2025最新行业报告,针对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。
在这里插入图片描述

⑤ 大模型项目实战&配套源码

学以致用,在项目实战中检验和巩固你所学到的知识,同时为你找工作就业和职业发展打下坚实的基础。
在这里插入图片描述

⑥ 大模型大厂面试真题

面试不仅是技术的较量,更需要充分的准备。在你已经掌握了大模型技术之后,就需要开始准备面试,我精心整理了一份大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余

图片

以上资料如何领取?

在这里插入图片描述

为什么大家都在学大模型?

最近科技巨头英特尔宣布裁员2万人,传统岗位不断缩减,但AI相关技术岗疯狂扩招,有3-5年经验,大厂薪资就能给到50K*20薪!

图片

不出1年,“有AI项目经验”将成为投递简历的门槛。

风口之下,与其像“温水煮青蛙”一样坐等被行业淘汰,不如先人一步,掌握AI大模型原理+应用技术+项目实操经验,“顺风”翻盘!
在这里插入图片描述
在这里插入图片描述

这些资料真的有用吗?

这份资料由我和鲁为民博士(北京清华大学学士和美国加州理工学院博士)共同整理,现任上海殷泊信息科技CEO,其创立的MoPaaS云平台获Forrester全球’强劲表现者’认证,服务航天科工、国家电网等1000+企业,以第一作者在IEEE Transactions发表论文50+篇,获NASA JPL火星探测系统强化学习专利等35项中美专利。本套AI大模型课程由清华大学-加州理工双料博士、吴文俊人工智能奖得主鲁为民教授领衔研发。

资料内容涵盖了从入门到进阶的各类视频教程和实战项目,无论你是小白还是有些技术基础的技术人员,这份资料都绝对能帮助你提升薪资待遇,转行大模型岗位。
在这里插入图片描述
在这里插入图片描述

以上全套大模型资料如何领取?

在这里插入图片描述

Logo

有“AI”的1024 = 2048,欢迎大家加入2048 AI社区

更多推荐