跟着Nature学作图:R语言ggplot2堆积柱形图完整示例
这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。今天的推文学习一下推文中的Figure 1a的堆积柱形图,没有找到论文中的作图代码,但是找到了原始数据集,有了原始数据集就可以自己写代码来做这个图。作为普通人,入局大模型时代需要持续
论文
A global reptile assessment highlights shared conservation needs of tetrapods
https://www.nature.com/articles/s41586-022-04664-7#Sec33
数据代码链接
https://github.com/j-marin/Global-reptile-assessment-
今天的推文学习一下推文中的Figure 1a的堆积柱形图,没有找到论文中的作图代码,但是找到了原始数据集,有了原始数据集就可以自己写代码来做这个图

image.png
作图数据集部分截图

image.png
读取数据集
library(readxl)
dat01<-read_excel("data/20220630/41586_2022_4664_MOESM3_ESM.xlsx",
sheet = "Fig 1a")
head(dat01)
最基本的堆积柱形图
library(ggplot2)
ggplot(data = dat01,aes(x=className,y=n,fill=rlCodes))+
geom_bar(stat = "identity",
position = "stack")

image.png
调整x轴和图例的前后顺序
table(dat01$className)
table(dat01$rlCodes)
dat01$className<-factor(
dat01$className,
levels = c("Amphibians","Mammals","Reptiles","Birds")
)
dat01$rlCodes<-factor(
dat01$rlCodes,
levels = rev(c("EX","EW","CR","EN","VU","DD","NT","LC")))
ggplot(data = dat01,aes(x=className,y=n,fill=rlCodes))+
geom_bar(stat = "identity",
position = "stack")+
scale_fill_discrete(limits=c("EX","EW","CR",
"EN","VU","DD","NT","LC"))

image.png
这里的小知识点是调整图例的顺序可以使用函数scale_fill_discrete(limits=c("EX","EW","CR", "EN","VU","DD","NT","LC"))
现在堆积柱形图展示的是真实数值,接下来把它转换成比例
ggplot(data = dat01,aes(x=className,y=n,fill=rlCodes))+
geom_bar(stat = "identity",
position = "fill")+
scale_fill_discrete(limits=c("EX","EW","CR",
"EN","VU","DD","NT","LC"))
只需要把position = "stack" 改成 position = "fill"
添加顶部的文字
library(tidyverse)
dat01 %>%
group_by(className) %>%
summarise(total_number=sum(n)) %>%
ungroup() %>%
mutate(ratio=total_number/sum(total_number)) %>%
mutate(ratio=scales::percent(ratio)) -> dat02
ggplot(data = dat01,aes(x=className,y=n,fill=rlCodes))+
geom_bar(stat = "identity",
position = "fill")+
scale_fill_discrete(limits=c("EX","EW","CR",
"EN","VU","DD","NT","LC"))+
geom_text(data=dat02,
aes(x=className,y=1,
label=paste0(total_number,"\n","(",ratio,")")),
inherit.aes = FALSE,
vjust=-0.2)+
scale_y_continuous(expand = expansion(mult=c(0,0.1)))

image.png
更改配色和其他主题
ggplot(data = dat01,aes(x=className,y=n,fill=rlCodes))+
geom_bar(stat = "identity",
position = "fill")+
scale_fill_manual(values = c("LC"="#98d09d","NT"="#d7e698",
"DD"="#dadada","VU"="#fbf398",
"EN"="#f7a895","CR"="#e77381",
"EW"="#9b8191","EX"="#8f888b"),
limits=c("EX","EW","CR","EN","VU","DD","NT","LC"))+
geom_text(data=dat02,
aes(x=className,y=1,
label=paste0(total_number,"\n","(",ratio,")")),
inherit.aes = FALSE,
vjust=-0.2)+
scale_y_continuous(expand = expansion(mult=c(0.01,0.1)),
labels = scales::percent_format())+
theme(panel.background = element_blank(),
axis.line = element_line(),
legend.position = "bottom")+
labs(x=NULL,y="Species threatened (%)")+
guides(fill=guide_legend(title = NULL,nrow = 1,byrow = FALSE))

image.png
制作封面图
library(patchwork)
p2+p1

image.png
示例数据可以到论文中去下载,示例代码可以在推文中复制、
AI大模型学习福利
作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
一、全套AGI大模型学习路线
AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

因篇幅有限,仅展示部分资料,需要点击文章最下方名片即可前往获取
二、640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

因篇幅有限,仅展示部分资料,需要点击文章最下方名片即可前往获
三、AI大模型经典PDF籍
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

因篇幅有限,仅展示部分资料,需要点击文章最下方名片即可前往获
四、AI大模型商业化落地方案

因篇幅有限,仅展示部分资料,需要点击文章最下方名片即可前往获
作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量
更多推荐


所有评论(0)