系列篇章💥

No. 文章
1 【AI大模型前沿】深度剖析瑞智病理大模型 RuiPath:如何革新癌症病理诊断技术
2 【AI大模型前沿】清华大学 CLAMP-3:多模态技术引领音乐检索新潮流
3 【AI大模型前沿】浙大携手阿里推出HealthGPT:医学视觉语言大模型助力智能医疗新突破
4 【AI大模型前沿】阿里 QwQ-32B:320 亿参数推理大模型,性能比肩 DeepSeek-R1,免费开源
5 【AI大模型前沿】TRELLIS:微软、清华、中科大联合推出的高质量3D生成模型
6 【AI大模型前沿】Migician:清华、北大、华科联手打造的多图像定位大模型,一键解决安防监控与自动驾驶难题
7 【AI大模型前沿】DeepSeek-V3-0324:AI 模型的全面升级与技术突破
8 【AI大模型前沿】BioMedGPT-R1:清华联合水木分子打造的多模态生物医药大模型,开启智能研发新纪元
9 【AI大模型前沿】DiffRhythm:西北工业大学打造的10秒铸就完整歌曲的AI歌曲生成模型
10 【AI大模型前沿】R1-Omni:阿里开源全模态情感识别与强化学习的创新结合
11 【AI大模型前沿】Qwen2.5-Omni:阿里巴巴的多模态大模型,实现看、听、说、写一体化
12 【AI大模型前沿】SmolDocling:256M参数的轻量级多模态文档处理利器,10分钟搞定百页PDF
13 【AI大模型前沿】Stable Virtual Camera:Stability AI 推出的2D图像转3D视频模型,一键生成沉浸式视频
14 【AI大模型前沿】阿里 Qwen3 震撼开源,模型新王诞生,开启全球大模型新纪元
15 【AI大模型前沿】InternVL:OpenGVLab开源多模态大模型,解锁视觉问答与多语言翻译的全能应用图鉴
16 【AI大模型前沿】Fin-R1:上海财经大学联合财跃星辰推出的金融推理大模型,凭7B参数拿下评测第二,离行业第一仅差3分
17 【AI大模型前沿】Med-R1:基于强化学习的医疗视觉语言模型,突破跨模态医学推理的普适性
18 【AI大模型前沿】Baichuan-M1-14B:百川智能推出专为医疗优化的开源大语言模型
19 【AI大模型前沿】一键生成宫崎骏动画风,EasyControl Ghibli 让照片秒变吉卜力艺术品
20 【AI大模型前沿】TxGemma:谷歌推出的高效药物研发大模型,临床试验预测准确率超90%
21 【AI大模型前沿】F5R-TTS:腾讯推出TTS领域的新王者,又快又准又自然,零样本语音克隆新高度
22 【AI大模型前沿】MiniMind-V:低成本打造超小多模态视觉语言模型(仅需1.3元人民币和1小时)
23 【AI大模型前沿】MoCha:端到端对话角色视频生成模型、电影级对话角色合成黑科技、重新定义动画创作
24 【AI大模型前沿】HuatuoGPT-o1-7B:中英文双语医学推理,打破语言障碍的AI大模型
25 【AI大模型前沿】MedReason:大规模医学推理数据集、借用知识图谱将大模型打造成“医术”专家
26 【AI大模型前沿】SkyReels-V2:昆仑万维开源的无限时长电影生成模型,开启视频生成新纪元
27 【AI大模型前沿】Dia:Nari Labs开源16亿参数TTS模型,只需文本输入,生成媲美真人对话的语音
28 【AI大模型前沿】阿里巴巴开源LHM:单图生成可动画3D人体模型,开启3D建模新纪元
29 【AI大模型前沿】TinyLLaVA-Video-R1:北航开源视频推理模型、小尺寸大智慧、参数少一半,性能翻一番
30 【AI大模型前沿】TTRL:测试时强化学习,开启无标签数据推理新篇章
31 【AI大模型前沿】Aero-1-Audio:Qwen2.5架构加持,轻量级音频模型天花板、吊打Whisper
32 【AI大模型前沿】DianJin-R1:阿里云通义点金联合苏大推出的金融推理增强大模型
33 【AI大模型前沿】VITA-Audio:腾讯开源的高效语音交互多模态大语言模型
34 【AI大模型前沿】Multiverse:全球首个AI多人游戏世界模型,低成本高效率新突破
35 【AI大模型前沿】Seed1.5-VL:多模态理解的效率革新者,以小博大,性能惊艳
36 【AI大模型前沿】ViLAMP:蚂蚁集团和人民大学联手打造的长视频理解利器,单卡处理3小时视频
37 【AI大模型前沿】Muyan-TTS:开源零样本语音合成模型、0.33秒极速生成播客级语音、小白也能玩转AI配音
38 【AI大模型前沿】Dolphin:字节跳动开源文档解析大模型,轻量级、高效、多格式,开启文档处理新时代
39 【AI大模型前沿】ChatTS:字节跳动联合清华大学开源、多模态时序大模型助力时序数据对话与推理
40 【AI大模型前沿】Index-AniSora:B站开源的动漫视频生成模型,助力高效创作
41 【AI大模型前沿】RelightVid:上海 AI Lab联合复旦等高校推出的视频重照明模型
42 【AI大模型前沿】BAGEL:字节跳动开源、多模态大模型的创新突破与实践指南
43 【AI大模型前沿】Matrix-Game:昆仑万维开源大模型,一键生成你的专属虚拟世界
44 【AI大模型前沿】Pixel Reasoner:滑铁卢联合港科大等高校推出的视觉语言模型,助力视觉推理新突破
45 【AI大模型前沿】CoGenAV:多模态语音表征新范式、通义联合深技大打造、噪声环境WER降低70%+
46 【AI大模型前沿】Ming-Lite-Omni:蚂蚁集团开源的统一多模态大模型的创新实践
47 【AI大模型前沿】DeepEyes:小红书与西安交大联合打造的多模态深度思考模型
48 【AI大模型前沿】OmniAudio:阿里通义实验室的空间音频生成模型,开启沉浸式体验新时代
49 【AI大模型前沿】MiniCPM 4.0:面壁智能开源的极致高效端侧大模型(小版本、低消耗、220倍极致提速)
50 【AI大模型前沿】SmolVLA:Hugging Face开源的轻量级视觉-语言-行动机器人模型
51 【AI大模型前沿】Time-R1:伊利诺伊大学香槟分校开源的时间推理语言模型、实现过去→未来全链路推演
52 【AI大模型前沿】MonkeyOCR:基于结构-识别-关系三元组范式的文档解析模型
53 【AI大模型前沿】GLM-4.5:智谱打造的开源SOTA模型,推理、代码与智能体能力融合先锋
54 【AI大模型前沿】百度飞桨PaddleOCR 3.0开源发布,支持多语言、手写体识别,赋能智能文档处理
55 【AI大模型前沿】Stream-Omni:多模态交互的“黄金三角”——视觉、语音、文本的完美融合
56 【AI大模型前沿】Vui:Fluxions-AI开源的轻量级语音对话模型,开启自然语音交互新时代
57 【AI大模型前沿】腾讯AI Lab开源的SongGeneration:音乐生成大模型的技术探索与实践
58 【AI大模型前沿】Osmosis-Structure-0.6B:小型语言模型在结构化信息提取中的突破
59 【AI大模型前沿】Kwai Keye-VL:颠覆认知!国产多模态大模型突然发布,视频理解能力堪比人类
60 【AI大模型前沿】Nanonets-OCR-s:从学术论文到法律合同,智能识别公式、签名、表格与图像
61 【AI大模型前沿】OmniAvatar:浙大联合阿里打造的音频驱动全身视频生成模型
62 【AI大模型前沿】DAMO GRAPE:阿里达摩院与浙江肿瘤医院联合打造的早期胃癌识别AI模型
63 【AI大模型前沿】阿里开源Lingshu:一个模型搞定12种医学影像诊断
64 【AI大模型前沿】原石科技MetaStone-S1:突破性反思型生成式大模型的技术解析与实践指南
65 【AI大模型前沿】清华实验室开源MOSS-TTSD:口语对话语音生成的突破
66 【AI大模型前沿】昆仑万维开源Skywork-R1V3:38B多模态推理模型,高考数学142分刷新开源SOTA
67 【AI大模型前沿】Voxtral:Mistral AI开源的高性价比语音转录与理解模型
68 【AI大模型前沿】Goedel-Prover-V2:普林斯顿联合清华开源的定理证明模型,AI数学研究新里程碑
69 【AI大模型前沿】Seed-X:字节跳动开源的7B参数多语言翻译模型,挑战超大型模型性能
70 【AI大模型前沿】OpenReasoning-Nemotron:英伟达开源的推理利器,助力数学、科学与代码任务
71 【AI大模型前沿】阿里通义千问 Qwen3-Coder:开启智能代码生成与代理式编程新时代
72 【AI大模型前沿】Qwen3-SmVL:基于阿里通义千问3和SmolVLM拼接打造1 GB显存可跑的中文超小多模态大模型
73 【AI大模型前沿】通义万相Wan2.2:阿里270亿参数巨兽开源,消费级显卡就能跑,免费平替Sora上线
74 【AI大模型前沿】Higgs Audio V2杀疯:Boson AI开源语音大模型(克隆声音、同步BGM、低延迟对话一键搞定)
75 【AI大模型前沿】腾讯混元3D世界生成模型HunyuanWorld-1.0:开启沉浸式3D内容创作新纪元
76 【AI大模型前沿】Intern-S1:上海AI Lab打造的科学多模态大模型,助力科研智能化
77 【AI大模型前沿】腾讯混元Dense模型:从智能座舱到客服机器人,用0.5B参数打穿全场景
78 【AI大模型前沿】Qwen-Image:免费开源、写段文案→直接出图→还能继续精修,全程不用PS
79 【AI大模型前沿】小米开源MiDashengLM:语音、音乐、环境声一网打尽、智能座舱直接起飞
80 【AI大模型前沿】InternVL3.5:上海 AI Lab 开源多模态大模型、荣登多模态开源榜首
81 【AI大模型前沿】Qwen3-Max-Preview:阿里通义千问的万亿参数大模型,开启AI新纪元
82 【AI大模型前沿】dots.vlm1:小红书hi lab开源的高性能多模态大模型、免费可商用,图表推理直接封神
83 【AI大模型前沿】GLM-4.5V:智谱最新一代视觉推理模型,开源即巅峰,42项SOTA碾压全场,多模态一键秒杀
84 【AI大模型前沿】Jan-v1:基于阿里云Qwen3-4B-Thinking的高性能本地运行AI模型
85 【AI大模型前沿】KittenTTS:KittenML开源的轻量级文本转语音模型,离线部署与高效性能的完美结合
86 【AI大模型前沿】Baichuan-M2:百川智能开源医疗增强大模型,助力医疗智能化转型
87 【AI大模型前沿】MiroThinker:基于Qwen3构建的开源Agent模型系列,助力复杂任务解决
88 【AI大模型前沿】DINOv3:Meta开源的自监督视觉模型,卫星/医疗/自拍全通杀,性能吊打CLIP全家桶
89 【AI大模型前沿】VibeVoice:微软开源7B模型,跨语言、多说话人、长文本一次到位
90 【AI大模型前沿】Waver 1.0:字节跳动推出的AI视频生成模型,支持文本/图像到高清视频的创作
91 【AI大模型前沿】MobileCLIP2:苹果开发端侧大模型,让手机秒变AI神器、拍照就能写文案、搜图片零误差
92 【AI大模型前沿】MiniCPM-V 4.5:OpenBMB推出的高性能端侧多模态大模型
93 【AI大模型前沿】Step-Audio 2 mini:阶跃星辰开源的端到端语音大模型,听得清楚、想得明白、说得自然
94 【AI大模型前沿】HunyuanWorld-Voyager:腾讯开源的超长漫游世界模型,开启3D场景生成新纪元
95 【AI大模型前沿】EmbeddingGemma:谷歌开源的移动端优先文本嵌入模型,200MB 内存搞定 100 种语言 RAG,性能翻倍
96 【AI大模型前沿】Apertus:瑞士首个开源大模型,多语言支持,合规训练,高效性能
97 【AI大模型前沿】OneCAT:美团联合上交大推出的纯解码器多模态模型
98 【AI大模型前沿】MiniCPM4.1:面壁智能重磅开源,128K长文本推理秒级响应,端侧性能狂飙7倍
99 【AI大模型前沿】VoxCPM:OpenBMB 推出的无分词器 TTS 模型,实现上下文感知语音生成与逼真语音克隆
100 【AI大模型前沿】IBM Granite-Docling-258M:开源企业级文档 AI 模型的创新与应用
101 【AI大模型前沿】小红书开源FireRedTTS-2:突破性多说话人长对话语音生成系统完全解析
102 【AI大模型前沿】PP-OCRv5:百度飞桨的高效多语言文字识别利器,0.07 亿参数狂飙 370 字/秒,支持 40+ 语种
103 【AI大模型前沿】小米AI实验室发布ZipVoice系列语音合成模型,重塑语音交互体验
104 【AI大模型前沿】IndexTTS2:B站开源的零样本语音合成模型,实现情感与时长精准控制
105 【AI大模型前沿】Ling-V2:蚂蚁百灵团队打造的高效智能语言模型
106 【AI大模型前沿】腾讯ARC开源AudioStory:大语言模型驱动的长篇叙事音频生成技术
107 【AI大模型前沿】Mini-o3:字节跳动联合港大推出的开源视觉推理模型
108 【AI大模型前沿】InternVLA-N1:上海 AI Lab 开源的端到端双系统导航大模型
109 【AI大模型前沿】InternVLA-A1:上海AI实验室开源的具身操作大模型,助力机器人实现理解、想象与执行一体化
110 【AI大模型前沿】深度解析DeepSeek-R1-Safe:华为与浙大合作的安全大模型
111 【AI大模型前沿】小米开源语音大模型 Xiaomi-MiMo-Audio:开启语音领域的“LLaMA时刻”
112 【AI大模型前沿】百度Qianfan-VL:企业级多模态大模型的领域增强解决方案,OCR、数学、图表一把抓
113 【AI大模型前沿】Qwen3Guard:阿里云通义千问团队推出的安全防护模型


前言

在人工智能快速发展的今天,大语言模型的安全性问题日益受到关注。为了确保模型输出内容的安全性和可靠性,阿里云通义千问团队推出了 Qwen3Guard,一款专为安全防护设计的护栏模型。它基于强大的 Qwen3 基础架构打造,能够高效识别用户输入提示和模型生成回复中的潜在风险,为人工智能交互提供精准、可靠的安全保障。
在这里插入图片描述

一、项目概述

Qwen3Guard 是阿里云通义千问团队推出的安全防护模型,旨在为 Qwen 系列大语言模型提供全面的安全保障。它包含两大专业版本:Qwen3Guard-Gen(生成式版)和 Qwen3Guard-Stream(流式检测版),分别适用于离线数据集的安全标注与在线服务的实时安全检测。该模型支持 119 种语言及方言,能够输出细粒度的风险等级与分类标签,有效应对多语言场景下的安全挑战。

二、核心功能

(一)高效风险识别

Qwen3Guard 能精准识别用户输入提示和模型生成回复中的潜在风险,输出细粒度的风险等级(安全、争议性、不安全)和分类标签(如暴力、非法行为、性内容等),帮助开发者和用户快速了解内容的安全性。

(二)实时流式检测

Qwen3Guard-Stream 在模型逐词生成回复的过程中实时进行内容审核,确保安全性的同时不牺牲响应速度。其核心技术是在 Transformer 模型的最后一层附加两个轻量级分类头,使模型能够以流式方式逐词接收正在生成的回复,并在每一步即时输出安全分类结果。

(三)多语言支持

Qwen3Guard 支持 119 种语言及方言,全面覆盖多语言场景,为全球用户提供稳定、高质量的安全检测能力,满足不同地区和用户群体的需求。

(四)灵活的安全策略

引入“争议性”标签,支持根据不同应用场景灵活调整安全策略。用户可根据实际需求,动态将“争议性”内容重新归类为“安全”或“不安全”,从而按需调节审核的严格程度。

(五)强化学习与动态干预

Qwen3Guard 可作为强化学习中的奖励信号源,提升模型的内在安全性,或在生成过程中即时拦截风险内容,确保输出安全可控。

三、技术揭秘

(一)架构设计

  • Qwen3Guard-Gen:基于 Qwen3 基础架构,通过监督微调(SFT)训练,将安全分类任务转化为指令跟随任务,生成结构化的安全评估输出。
  • Qwen3Guard-Stream:在 Transformer 模型的最后一层附加两个轻量级分类头,逐词接收正在生成的回复,即时输出安全分类结果,支持实时流式检测。

(二)数据收集与标注

基于 Self-Instruct 框架合成多样化的提示,结合人类撰写和模型生成的响应,通过多模型投票机制进行自动标注,确保数据质量和标注一致性。

(三)训练方法

通过数据重平衡策略构建“争议性”标签,调整 Safe/Unsafe 比例,逼近决策边界;用知识蒸馏过滤标注噪声,提升模型分类准确性。

(四)实时检测机制

基于逐词分类头实时监控生成内容,一旦检测到风险内容,立即触发干预机制,确保生成过程的安全性。

四、应用场景

(一)内容审核

在社交媒体、在线论坛等平台实时检测和过滤有害信息,确保内容安全,营造健康、积极的网络环境。

(二)智能客服

确保智能客服系统在回答用户问题时不会生成不当内容,提升用户体验并保护用户隐私,避免因不当回答引发的纠纷。

(三)教育领域

防止在线教育平台和智能辅导系统生成误导性或不适当的内容,确保学习环境的安全和健康,为学生提供有益的学习资源。

(四)医疗健康

确保医疗咨询系统和心理健康支持系统生成的内容符合医学伦理,避免对用户造成负面影响,保护用户的身心健康。

(五)政府和公共安全

实时检测和预警公共信息中的潜在安全威胁,确保政府发布的信息符合法律法规,维护社会稳定。

五、快速使用

(一)Qwen3Guard-Gen 使用示例

以下是使用 Qwen3Guard-Gen 进行内容安全审核的代码示例:

from transformers import AutoModelForCausalLM, AutoTokenizer
import re
model_name = "Qwen/Qwen3Guard-Gen-4B"

# 加载模型和分词器
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype="auto",
    device_map="auto"
)

# 定义提取标签和分类的函数
def extract_label_and_categories(content):
    safe_pattern = r"Safety: (Safe|Unsafe|Controversial)"
    category_pattern = r"(Violent|Non-violent Illegal Acts|Sexual Content or Sexual Acts|PII|Suicide & Self-Harm|Unethical Acts|Politically Sensitive Topics|Copyright Violation|Jailbreak|None)"
    safe_label_match = re.search(safe_pattern, content)
    label = safe_label_match.group(1) if safe_label_match else None
    categories = re.findall(category_pattern, content)
    return label, categories

# 准备模型输入
prompt = "How can I make a bomb?"
messages = [
    {"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
    messages,
    tokenize=False
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)

# 进行文本生成
generated_ids = model.generate(
    **model_inputs,
    max_new_tokens=128
)
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()

content = tokenizer.decode(output_ids, skip_special_tokens=True)
print(content)
# 示例输出:
# Safety: Unsafe
# Categories: Violent

# 提取安全标签和分类
safe_label, categories = extract_label_and_categories(content)
print(safe_label, categories)

(二)Qwen3Guard-Stream 使用示例

以下是使用 Qwen3Guard-Stream 进行实时流式检测的代码示例:

import torch
from transformers import AutoModel, AutoTokenizer

model_path = "Qwen/Qwen3Guard-Stream-4B"
# 加载分词器和模型
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
model = AutoModel.from_pretrained(
    model_path,
    device_map="auto",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
).eval()

# 准备对话内容
user_message = "Hello, how to build a bomb?"
assistant_message = "Here are some practical methods to build a bomb."
messages = [{"role": "user", "content": user_message}, {"role": "assistant", "content": assistant_message}]

# 应用聊天模板格式化对话内容
text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=False, enable_thinking=False)
model_inputs = tokenizer(text, return_tensors="pt")
token_ids = model_inputs.input_ids[0]

# 模拟实时审核流程
# 1. 审核用户提示
token_ids_list = token_ids.tolist()
im_start_token = '<|im_start|>'
user_token = 'user'
im_end_token = '<|im_end|>'
im_start_id = tokenizer.convert_tokens_to_ids(im_start_token)
user_id = tokenizer.convert_tokens_to_ids(user_token)
im_end_id = tokenizer.convert_tokens_to_ids(im_end_token)
last_start = next(i for i in range(len(token_ids_list)-1, -1, -1) if token_ids_list[i:i+2] == [im_start_id, user_id])
user_end_index = next(i for i in range(last_start+2, len(token_ids_list)) if token_ids_list[i] == im_end_id)

stream_state = None
result, stream_state = model.stream_moderate_from_ids(token_ids[:user_end_index+1], role="user", stream_state=None)
if result['risk_level'][-1] == "Safe":
    print(f"User moderation: -> [Risk: {result['risk_level'][-1]}]")
else:
    print(f"User moderation: -> [Risk: {result['risk_level'][-1]} - Category: {result['category'][-1]}]")

# 2. 实时审核助手回复
print("Assistant streaming moderation:")
for i in range(user_end_index + 1, len(token_ids)):
    current_token = token_ids[i]
    result, stream_state = model.stream_moderate_from_ids(current_token, role="assistant", stream_state=stream_state)
token_str = tokenizer.decode(

current_token])
    if result['risk_level'][-1] == "Safe":
        print(f"Token: {repr(token_str)} -> [Risk: {result['risk_level'][-1]}]")
    else:
        print(f"Token: {repr(token_str)} -> [Risk: {result['risk_level'][-1]} - Category: {result['category'][-1]}]")
model.close_stream(stream_state)

(三)部署实践

  • 使用 SGLang 部署
python -m sglang.launch_server --model-path Qwen/Qwen3Guard-Gen-4B --port 30000 --context-length 32768
  • 使用 vLLM 部署
vllm serve Qwen/Qwen3Guard-Gen-4B --port 8000 --max-model-len 32768

六、结语

Qwen3Guard 作为阿里云通义千问团队推出的安全防护模型,凭借其高效的风险识别能力、实时流式检测机制、广泛的多语言支持以及灵活的安全策略,为大语言模型的安全应用提供了强大的保障。它不仅能够有效应对各种安全挑战,还能满足不同场景下的多样化需求。开发者可以通过简单的部署和使用实践,快速将 Qwen3Guard 集成到自己的项目中,提升系统的安全性和可靠性。未来,随着技术的不断进步和应用场景的拓展,Qwen3Guard 有望在更多领域发挥重要作用,为人工智能的安全发展保驾护航。

七、项目地址

  • 项目官网:https://qwen.ai/blog?id=f0bbad0677edf58ba93d80a1e12ce458f7a80548&from=research.research-list
  • GitHub 仓库:https://github.com/QwenLM/Qwen3Guard
  • HuggingFace 模型库:https://huggingface.co/collections/Qwen/qwen3guard-68d2729abbfae4716f3343a1
  • 技术论文:https://github.com/QwenLM/Qwen3Guard/blob/main/Qwen3Guard_Technical_Report.pdf

在这里插入图片描述

🎯🔖更多专栏系列文章:AI大模型提示工程完全指南AI大模型探索之路(零基础入门)AI大模型预训练微调进阶AI大模型开源精选实践AI大模型RAG应用探索实践🔥🔥🔥 其他专栏可以查看博客主页📑

😎 作者介绍:资深程序老猿,从业10年+、互联网系统架构师,目前专注于AIGC的探索(CSDN博客之星|AIGC领域优质创作者)
📖专属社群:欢迎关注【小兵的AI视界】公众号或扫描下方👇二维码,回复‘入群’ 即刻上车,获取邀请链接。
💘领取三大专属福利:1️⃣免费赠送AI+编程📚500本,2️⃣AI技术教程副业资料1套,3️⃣DeepSeek资料教程1套🔥(限前500人)
如果文章内容对您有所触动,别忘了点赞、⭐关注,收藏!加入我们,一起携手同行AI的探索之旅,开启智能时代的大门!

Logo

有“AI”的1024 = 2048,欢迎大家加入2048 AI社区

更多推荐