在这里插入图片描述

对于接触 AI 相关的朋友,平时都会遇到很多新的概念,先不说什么大模型的技术性的术语,就AI应用方面的术语就非常多。

而且,现在还是依旧层出不穷。

在技术迭代到一定程度之后,它就必然会满足更多的实际场景,而要满足某些实际场景的话,并不是单单依靠某个单一技术就可以实现的。

举个例子来说,大家知道计算机技术最开始其实只有CPU和内存等外置硬件设备,那个时候都是基于命令行方式来做一些计算工作,普通人想要用起来计算机的话,门槛极高。

后来便有了Linux这类操作系统,它可以支持自定义编程,也就是在计算机硬件基础上来开发满足实际场景的软件,这里面最典型的就是操作系统,也就是我们现在用的Window、Mac等操作系统。

这时候,计算机(PC)和Windows、MAC等等都是当时为了满足大众使用计算机所创造出的术语/名词,通过这个概念名词来定义某个技术的作用是什么,相当于给它们起一个名字来表示。

继续沿着操作系统之后,就知道后面有很多基于操作系统之上的新名词诞生,例如Web浏览器、客户端软件、Client/Server技术架构等等,这些又都是在操作系统之上为了满足更多实际场景而开发出来的新东西,而每一个都是满足当时场景下的新名词。

所以,在AI成为新的普适性的技术底座之前,必然会有更多的名词定义出来,而它也是为了满足特定场景,解决特定问题所存在的必然。

今天我们主要讲明白关于LLMs、RAG和AI Agent这三个定义的区别到底是什么?这三者目前已经是做AI相关应用绕不过去的名词,也是作为初入AI应用开发者,必须了解掌握的基础知识。

首先,要先注意一点:它们并不是竞争技术,而是在三个不同层面,满足不同实际场景的能力展示,另外大部分人对它们使用方式都是错误的。

LLM 全称是大语言模型(Large Language Model),它是AI应用的“天才大脑”,这个天才大脑学习了过去上下五千年的所有知识,是的,是所有知识,堪比“全能人”。

这个“天才大脑”你问它啥,它都能回答上来,甚至还能帮助我们写写文章、分析点东西、编程、画画等等的。

LLMs也分为很多种,有底座大模型,例如ChatGPT、DeepSeek、Qwen等等,也有专有大模型,也就是专门用来画画,专门用来编写的模型,例如绘画模型:Midjourney、Stable Diffusion、Flux等等,编程模型:Claude、Curos、kimi-k2-thing等等。

专有模型某种意义上来说,也是基于底座通用大模型来单独训练出来的能力,也就是让“天才大脑”对于某一个方面特别精通,做了专项的训练。

但是,这个大模型有一个问题,它只能知道过去已经发生的时候,在上面也提到了,它是基于过去的所有知识训练、学习出来的,所以,它的知识内容啊,是有某一个时间节点的,例如ChatGPT-5的知识时间就是2024年6月,单独问这个模型2025年的事情,它都不知道。

当然,现在是有了联网搜索的能力了,但是这种其实是在大模型之外的Agent助手,通过这个外部Agent助手,可以爬取网站的数据,或者通过搜索引擎(Baidu、Bing、Google等)来获取相关数据,然后在交给大模型来总结分析。

总结起来:LLM 在思考方面非常出色,但对当前情况却一无所知。

在这里插入图片描述

这个时候,就可以引出第二个名词解释,就是RAG。

RAG(Retrieval-Augmented Generation,检索增强生成)可以说是一个记忆系统,它可以将原本静态固定的“天才大脑”LLM中的知识,链接到外部实时的知识库,当你提问问题的时候,RAG会主动搜索外部数据,拉去相关文档,并将它们作为上下文输入到LLM中。

这样就好比于,原本是一个“书呆子”,突然打开了视野,变得灵活多动了,对于原来静态的大模型来说,动态信息、实时数据也就以为这它不需要重新训练了。

在大模型训练(也就是模型学习知识的过程)是一个非常高昂成本的过程,啥意思?就是费钱,不仅仅要买书、还要营养跟得上,不然动不动就卡壳、生病(出bug)啥的,所以,要用很多高端GPU卡,来吸收海量数据才能让这个大脑学会知识。

最基础的工具是能够访问最新信息的能力。检索增强生成(RAG)为智能体提供了一张“借书证”,使其能查询外部知识,这些知识通常存储在向量数据库或知识图谱中——从公司内部文档到通过谷歌搜索获取的网络知识,应有尽有。对于结构化数据,自然语言到SQL(NL2SQL)工具则使智能体能够直接查询数据库,从而解答诸如“上个季度我们的畅销产品有哪些?”这类分析性问题。通过在发言前先查找相关信息——无论是来自文档还是数据库——智能体得以立足于事实,显著地减少幻觉。

RAG 流程结合了两个关键步骤:

1. 检索(Retrieval):

当用户提出问题时,系统首先从一个或多个外部、定制化的知识库(如公司的内部文件、最新的数据库、特定领域文档等)中,检索出最相关的小块信息(Chunk)。

  1. 增强生成(Augmented Generation):

然后,系统将用户的原始问题和检索到的相关信息作为上下文(Context)输入给 LLM,指示 LLM 严格基于这些上下文信息来生成答案。

RAG 就像是给那个“全能天才大脑”配备了一位随身图书馆助理

1. 知识更新与定制:

当你问一个关于“公司最新财报”或“某本专业书籍第十章内容”的问题时,RAG 不会依赖 LLM 内部的旧知识,而是立即去检索公司内部最新的文档。

2. 消除幻觉:

通过提供事实依据,RAG 极大地降低了 LLM “胡编乱造”的风险,因为它生成的答案是有据可查的。

3. 引用来源:

优秀的 RAG 系统还能提供它查找信息的来源链接或文档页码,增加了可信度。

接下来还有最后一个名词,就是AI Agent,也叫做AI智能体,为啥叫智能体?

结合上面,LLM是思考,RAG是提供信息,但是它俩都不具备行动能力,有脑,有手,但是不知道怎么走路。

而AI Agent也就是智能体,它就是围绕大脑LLM构建一个循环控制系统,能够感知目标、规划步骤、执行动作、并能够反思结果。

本质上,智能体通过一个连续的循环过程来实现其目标。它可被分解为五个基本步骤:

  1. 获取任务:该过程由一个具体且高层次的目标启动。此任务可由用户(例如:“为团队安排即将召开的会议出行事宜”)提供,或由自动触发机制(例如:“新收到一封高优先级客户工单”)激活。

  2. 扫描场景:Agent感知到环境中获取上下文信息。这涉及协调层访问其可用资源:“用户请求的内容是什么?”、“我的术语记忆中有哪些信息?我是否已尝试过执行此任务?”、“用户上周是否曾向我提供过指导?”、“我能从我的工具(如日历、数据库或API)中访问哪些内容?”

  3. 仔细思考:这是智能体的核心“思考”循环,由推理模型驱动。

智能体首先将任务(步骤1)与场景(步骤2)进行分析,并制定行动计划。这并非单一的思考过程,而通常是一系列连续的推理链条:“要预订行程,我首先需要知道团队成员都有谁,因此我会使用get_team_roster工具;接下来,我还需要通过calendar_api检查他们的日程安排。”

  1. 采取行动:编排层执行计划的第一步具体操作。它会选择并调用适当的工具——无论是调用API、运行代码函数,还是查询数据库。这是代理基于自身内部推理,真正作用于外部世界的行为。

  2. 观察并迭代:智能体观察其行动的结果。get_team_roster工具会返回一个包含五个名字的列表。这些新信息将被添加到智能体的上下文或“记忆”中。随后,循环再次启动,回到步骤3:“现在我已获得名单,下一步是查询日历,确认这五个人的日程安排。我将使用calendar_api。”

而真正的生产系统会叠加所有三个:用 LLM 进行推理**,用 RAG 确保准确性,以及用Agent框架实现自主性。**

使用 LLM 单独处理纯语言任务时:写作、摘要、解释。

当准确性至关重要时添加 RAG:从内部文档、技术手册、特定领域知识中回答。

需要真正自主性时部署 Agents:能够决策、行动和管理复杂工作流的系统。

未来不在于选择其一。而在于将三者结合起来进行架构设计。

用于思考的 LLMs。

用于认知的 RAG。

用于执行的Agent。

由此才能够构建出AI智能时代

普通人如何抓住AI大模型的风口?

领取方式在文末

为什么要学习大模型?

目前AI大模型的技术岗位与能力培养随着人工智能技术的迅速发展和应用 , 大模型作为其中的重要组成部分 , 正逐渐成为推动人工智能发展的重要引擎 。大模型以其强大的数据处理和模式识别能力, 广泛应用于自然语言处理 、计算机视觉 、 智能推荐等领域 ,为各行各业带来了革命性的改变和机遇 。

目前,开源人工智能大模型已应用于医疗、政务、法律、汽车、娱乐、金融、互联网、教育、制造业、企业服务等多个场景,其中,应用于金融、企业服务、制造业和法律领域的大模型在本次调研中占比超过 30%。
在这里插入图片描述

随着AI大模型技术的迅速发展,相关岗位的需求也日益增加。大模型产业链催生了一批高薪新职业:
在这里插入图片描述

人工智能大潮已来,不加入就可能被淘汰。如果你是技术人,尤其是互联网从业者,现在就开始学习AI大模型技术,真的是给你的人生一个重要建议!

最后

只要你真心想学习AI大模型技术,这份精心整理的学习资料我愿意无偿分享给你,但是想学技术去乱搞的人别来找我!

在当前这个人工智能高速发展的时代,AI大模型正在深刻改变各行各业。我国对高水平AI人才的需求也日益增长,真正懂技术、能落地的人才依旧紧缺。我也希望通过这份资料,能够帮助更多有志于AI领域的朋友入门并深入学习。

真诚无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发

在这里插入图片描述

大模型全套学习资料展示

自我们与MoPaaS魔泊云合作以来,我们不断打磨课程体系与技术内容,在细节上精益求精,同时在技术层面也新增了许多前沿且实用的内容,力求为大家带来更系统、更实战、更落地的大模型学习体验。

图片

希望这份系统、实用的大模型学习路径,能够帮助你从零入门,进阶到实战,真正掌握AI时代的核心技能!

01 教学内容

图片

  • 从零到精通完整闭环:【基础理论 →RAG开发 → Agent设计 → 模型微调与私有化部署调→热门技术】5大模块,内容比传统教材更贴近企业实战!

  • 大量真实项目案例: 带你亲自上手搞数据清洗、模型调优这些硬核操作,把课本知识变成真本事‌!

02适学人群

应届毕业生‌: 无工作经验但想要系统学习AI大模型技术,期待通过实战项目掌握核心技术。

零基础转型‌: 非技术背景但关注AI应用场景,计划通过低代码工具实现“AI+行业”跨界‌。

业务赋能突破瓶颈: 传统开发者(Java/前端等)学习Transformer架构与LangChain框架,向AI全栈工程师转型‌。

image.png

vx扫描下方二维码即可
在这里插入图片描述

本教程比较珍贵,仅限大家自行学习,不要传播!更严禁商用!

03 入门到进阶学习路线图

大模型学习路线图,整体分为5个大的阶段:
图片

04 视频和书籍PDF合集

图片

从0到掌握主流大模型技术视频教程(涵盖模型训练、微调、RAG、LangChain、Agent开发等实战方向)

图片

新手必备的大模型学习PDF书单来了!全是硬核知识,帮你少走弯路(不吹牛,真有用)
图片

05 行业报告+白皮书合集

收集70+报告与白皮书,了解行业最新动态!
图片

06 90+份面试题/经验

AI大模型岗位面试经验总结(谁学技术不是为了赚$呢,找个好的岗位很重要)图片
在这里插入图片描述

07 deepseek部署包+技巧大全

在这里插入图片描述

由于篇幅有限

只展示部分资料

并且还在持续更新中…

真诚无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发

在这里插入图片描述

Logo

有“AI”的1024 = 2048,欢迎大家加入2048 AI社区

更多推荐