本文介绍了大模型微调的三种主要方式:继续预训练(CPT)通过无标注数据强化特定能力;监督微调(SFT)使用问答对提升模型指令跟随能力;偏好训练(DPO)通过对比答案质量优化输出。文章强调微调成本高、技术门槛高,建议优先考虑提示词工程和RAG等替代方案。只有在需要特定领域专业知识、特殊输出格式、私有数据深度理解或性能要求极高的场景下,才值得投入资源进行微调。

1、什么是微调?

微调就是在已经训练好的大模型基础上,用你自己的数据继续训练,让模型更符合你的特定需求。

CPT(ContinualPre-Training)继续预训练最基础的微调方式。你拿到一个预训练好的模型,然后用大量无标签的文本数据继续训练它。

SFT(Supervised Fine-Tuning)监督微调最常用的微调方式。你准备好问题-答案对,教模型如何回答特定类型的问题。

DPO(Direct Preference Optimization)偏好训练最新的微调技术,通过对比“好答案“和“坏答案"来训练模型。

2、三种微调方式详解

PT(Continued Pre-Training,继续预训练)

通过无标注数据进行无监督继续预训练,强化或新增模型特定能力。

数据要求

需要大量文本数据(通常几GB到几十GB)数据质量要高,最好是你目标领域的专业内容

适用场景

让模型学习特定领域的知识,比如医学、法律、金融

增强模型对某种语言或方言的理解

让模型熟悉你所在行业的专业术语

SFT(Supervised Fine-Tuning)监督微调

有监督微调,增强模型指令跟随的能力,提供全参和高效训练方式。

数据要求

通常需要几千到几万条高质量的问答对

答案要准确、风格统一

适用场景

训练客服机器人

创建特定任务的助手(比如代码助手、写作助手)

让模型学会特定的对话风格

DPO(Direct Preference Optimization)偏好训练

引入负反馈,降低幻觉,使得模型输出更符合人类偏好

工作原理

给模型同一个问题的两个不同答案

告诉模型哪个答案更好

模型学会倾向于生成更好的答案

适用场景

让模型的回答更符合人类偏好

减少有害内容的生成

提高回答的质量和安全性

3、非必要不微调

1.成本高:需要大量GPU资源和时间

2.技术门槛高:需要懂机器学习、数据处理、模型训练

3.数据要求严格:需要高质量、大量的训练数据4.维护复杂:模型更新后需要重新微调

4、优先考虑替代方案

1.提示词工程

通过精心设计的提示词让模型理解你的需求

成本低,见效快,容易调整

适合大部分使用场景

2.RAG

让模型检索相关文档后再回答

能够获取最新信息

不需要重新训练模型

5、什么情况有必要微调

1.特定领域的专业知识

当你的业务涉及非常专业的领域,而通用模型的知识不够用时

如:医疗诊断系统、法律文书生成、特定行业的技术支持。

2.特殊的输出格式要求

需要模型输出特定格式,而提示词难以稳定控制时。如:结构化数据提取、特定的代码生成规范、标准化的报告格式。

3.私有数据的深度理解

需要模型深度理解你的私有数据,而RAG检索效果不够好时。如:企业内部知识库的深度应用、个人化推荐系统、基于历史数据的预测

4.性能要求极高的场景

对响应速度和准确性要求都很高的场景。如:实时客服系统、高频交易的决策支持、大规模自动化处理

总结

微调是一个强大的工具,但不是万能药。在考虑微调之前,先试试提示词优化和RAG。只有在确实需要深度定制,且有足够资源投入时,才考虑微调。

选择微调平台时,技术小白推荐阿里云百炼,有技术基础的推荐LLaMA-Factory。记住,工具是为了解决问题,不要为了微调而微调。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线科技企业深耕十二载,见证过太多因技术卡位而跃迁的案例。那些率先拥抱 AI 的同事,早已在效率与薪资上形成代际优势,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在大模型的学习中的很多困惑。我们整理出这套 AI 大模型突围资料包

  • ✅ 从零到一的 AI 学习路径图
  • ✅ 大模型调优实战手册(附医疗/金融等大厂真实案例)
  • ✅ 百度/阿里专家闭门录播课
  • ✅ 大模型当下最新行业报告
  • ✅ 真实大厂面试真题
  • ✅ 2025 最新岗位需求图谱

所有资料 ⚡️ ,朋友们如果有需要 《AI大模型入门+进阶学习资源包》下方扫码获取~
在这里插入图片描述

① 全套AI大模型应用开发视频教程

(包含提示工程、RAG、LangChain、Agent、模型微调与部署、DeepSeek等技术点)
在这里插入图片描述

② 大模型系统化学习路线

作为学习AI大模型技术的新手,方向至关重要。 正确的学习路线可以为你节省时间,少走弯路;方向不对,努力白费。这里我给大家准备了一份最科学最系统的学习成长路线图和学习规划,带你从零基础入门到精通!
在这里插入图片描述

③ 大模型学习书籍&文档

学习AI大模型离不开书籍文档,我精选了一系列大模型技术的书籍和学习文档(电子版),它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。
在这里插入图片描述

④ AI大模型最新行业报告

2025最新行业报告,针对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。
在这里插入图片描述

⑤ 大模型项目实战&配套源码

学以致用,在项目实战中检验和巩固你所学到的知识,同时为你找工作就业和职业发展打下坚实的基础。
在这里插入图片描述

⑥ 大模型大厂面试真题

面试不仅是技术的较量,更需要充分的准备。在你已经掌握了大模型技术之后,就需要开始准备面试,我精心整理了一份大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余

图片

以上资料如何领取?

在这里插入图片描述

为什么大家都在学大模型?

最近科技巨头英特尔宣布裁员2万人,传统岗位不断缩减,但AI相关技术岗疯狂扩招,有3-5年经验,大厂薪资就能给到50K*20薪!

图片

不出1年,“有AI项目经验”将成为投递简历的门槛。

风口之下,与其像“温水煮青蛙”一样坐等被行业淘汰,不如先人一步,掌握AI大模型原理+应用技术+项目实操经验,“顺风”翻盘!
在这里插入图片描述
在这里插入图片描述

这些资料真的有用吗?

这份资料由我和鲁为民博士(北京清华大学学士和美国加州理工学院博士)共同整理,现任上海殷泊信息科技CEO,其创立的MoPaaS云平台获Forrester全球’强劲表现者’认证,服务航天科工、国家电网等1000+企业,以第一作者在IEEE Transactions发表论文50+篇,获NASA JPL火星探测系统强化学习专利等35项中美专利。本套AI大模型课程由清华大学-加州理工双料博士、吴文俊人工智能奖得主鲁为民教授领衔研发。

资料内容涵盖了从入门到进阶的各类视频教程和实战项目,无论你是小白还是有些技术基础的技术人员,这份资料都绝对能帮助你提升薪资待遇,转行大模型岗位。
在这里插入图片描述
在这里插入图片描述

以上全套大模型资料如何领取?

在这里插入图片描述

Logo

有“AI”的1024 = 2048,欢迎大家加入2048 AI社区

更多推荐