在实际应用大语言模型(LLM)时,最核心也最常被忽视的部分之一就是它的“文本编码”(text embedding),即模型把一段自然语言转化为高维向量表示的能力。这个向量决定了下游任务(如分类、检索、聚类、问答等)的上限。

在这里插入图片描述

因此,如何让LLM产生更适合具体任务的文本编码,成了学术界和工业界持续探索的方向。目前主流做法可以清晰地归纳为三种逐渐演进的技术路线。

不做任何微调

这是最原始也最省资源的方式。把文本喂给一个预训练好的LLM(比如Llama、Mistral、Grok等),直接取最后一层token的隐藏状态(通常是[CLS]或者序列平均池化)作为编码向量。这种做法的优点是零成本、零延迟,几乎所有现成的开源模型都能直接这样用。

但缺点同样明显:预训练目标(通常是next-token prediction)和下游任务的需求并不完全对齐,导致产生的编码在很多垂直领域或特定任务上表现平平,尤其在语义相似度判断、专业领域分类等场景中很容易出现“泛化有余,精度不足”的情况。

这也是为什么很多团队发现直接用开源LLM的embedding去做检索召回时,效果常常不如专门的双塔句向量模型(如Sentence-BERT、E5、GTE等)。

为特定任务微调编码头

当我们需要更高的精度时,最常见也最有效的做法是对LLM进行有监督微调(SFT),但微调的对象不是整个模型,而只是新增一个轻量的“编码头”(encoding head),同时让梯度回传到LLM本体。这种方式又可以细分为两种典型场景:

调整编码维度或做分类任务

比如我们希望把编码压缩到256维,或者直接做多分类。这时通常会在LLM后面接一个线性层(或MLP),把最后一层隐藏状态映射到目标维度或类别数上,用交叉熵损失训练。训练过程中,LLM本体参数也会被更新,但因为加了LoRA/QLoRA等参数高效微调技术,实际显存开销可以控制在可接受范围。

这种方式在情感分析、意图识别、主题分类等任务上能把准确率大幅拉升到接近CEILLM(Chat模型)的水平,同时保持了较小的编码维度和推理速度。

让编码具备更好的相似度度量能力

这是目前最流行的文本编码微调方式:用带标签的(query, positive, negative)三元组或(question, answer)对做对比学习,让正样本的编码余弦相似度接近1,负样本接近0。

典型代表就是Sentence-BERT在BERT上的实践,现在也被广泛迁移到Llama、Mixtral、Qwen等开源LLM上。微调后产生的编码,在MS MARCO、MIRACL、C-MTEB等检索和语义相似度榜单上往往能碾压原生LLM的隐藏状态。

专为RAG问答场景微调

随着RAG架构成为主流,业界又发展出了第三种更精细的微调范式:让LLM同时编码问题和候选答案段落,然后通过一个极轻量的Text Encoding Head(通常就是一个可学习的投影矩阵)把两者的隐藏状态映射到同一空间,再用余弦相似度或点积作为相关性分数,用InfoNCE或二元交叉熵损失进行训练。

这种做法和第二种对比学习看似相似,但关键区别在于:

• 训练数据更贴近真实RAG场景(通常是“问题 + 正确段落 + 若干硬负段落”);

• 微调时问题和答案段落是分批次独立编码的(bi-encoder结构),推理时可以预先离线编码所有知识库文档,做到毫秒级检索;

只需要微调LLM的上半部分(或者只加LoRA),下半部分自回归头保持冻结,兼顾了检索精度和生成质量。

目前开源社区最强的RAG专用编码模型(如BGE-large、E5-mistral-7b-instruct、GritLM-7B等)基本都走的这条路,在BEIR、RGB、Narratives等零样本检索基准上已经大幅超越传统BM25+重排的流水线。

三种方式本质上是成本与效果的权衡:

• 如果你只是想快速验证想法,或者数据量极少,直接取原生LLM的最后一层隐藏状态就够了;

• 如果你有几千到几十万条标注数据,需要在特定领域或特定任务上达到SOTA,建议走第二种路线,用LoRA+对比学习/分类损失微调;

• 如果你最终的业务是RAG问答系统,且知识库规模在十万到百万级以上,强烈建议走第三种路线,训练一个专属的bi-encoder检索模型,性价比最高。

文本编码虽小,却决定了整个大模型应用的上限。选对微调策略,往往能用1%的算力换来10%的业务指标提升,这才是真正的“四两拨千斤”。

普通人如何抓住AI大模型的风口?

领取方式在文末

为什么要学习大模型?

目前AI大模型的技术岗位与能力培养随着人工智能技术的迅速发展和应用 , 大模型作为其中的重要组成部分 , 正逐渐成为推动人工智能发展的重要引擎 。大模型以其强大的数据处理和模式识别能力, 广泛应用于自然语言处理 、计算机视觉 、 智能推荐等领域 ,为各行各业带来了革命性的改变和机遇 。

目前,开源人工智能大模型已应用于医疗、政务、法律、汽车、娱乐、金融、互联网、教育、制造业、企业服务等多个场景,其中,应用于金融、企业服务、制造业和法律领域的大模型在本次调研中占比超过 30%。
在这里插入图片描述

随着AI大模型技术的迅速发展,相关岗位的需求也日益增加。大模型产业链催生了一批高薪新职业:
在这里插入图片描述

人工智能大潮已来,不加入就可能被淘汰。如果你是技术人,尤其是互联网从业者,现在就开始学习AI大模型技术,真的是给你的人生一个重要建议!

最后

只要你真心想学习AI大模型技术,这份精心整理的学习资料我愿意无偿分享给你,但是想学技术去乱搞的人别来找我!

在当前这个人工智能高速发展的时代,AI大模型正在深刻改变各行各业。我国对高水平AI人才的需求也日益增长,真正懂技术、能落地的人才依旧紧缺。我也希望通过这份资料,能够帮助更多有志于AI领域的朋友入门并深入学习。

真诚无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发

在这里插入图片描述

大模型全套学习资料展示

自我们与MoPaaS魔泊云合作以来,我们不断打磨课程体系与技术内容,在细节上精益求精,同时在技术层面也新增了许多前沿且实用的内容,力求为大家带来更系统、更实战、更落地的大模型学习体验。

图片

希望这份系统、实用的大模型学习路径,能够帮助你从零入门,进阶到实战,真正掌握AI时代的核心技能!

01 教学内容

图片

  • 从零到精通完整闭环:【基础理论 →RAG开发 → Agent设计 → 模型微调与私有化部署调→热门技术】5大模块,内容比传统教材更贴近企业实战!

  • 大量真实项目案例: 带你亲自上手搞数据清洗、模型调优这些硬核操作,把课本知识变成真本事‌!

02适学人群

应届毕业生‌: 无工作经验但想要系统学习AI大模型技术,期待通过实战项目掌握核心技术。

零基础转型‌: 非技术背景但关注AI应用场景,计划通过低代码工具实现“AI+行业”跨界‌。

业务赋能突破瓶颈: 传统开发者(Java/前端等)学习Transformer架构与LangChain框架,向AI全栈工程师转型‌。

image.png

vx扫描下方二维码即可
在这里插入图片描述

本教程比较珍贵,仅限大家自行学习,不要传播!更严禁商用!

03 入门到进阶学习路线图

大模型学习路线图,整体分为5个大的阶段:
图片

04 视频和书籍PDF合集

图片

从0到掌握主流大模型技术视频教程(涵盖模型训练、微调、RAG、LangChain、Agent开发等实战方向)

图片

新手必备的大模型学习PDF书单来了!全是硬核知识,帮你少走弯路(不吹牛,真有用)
图片

05 行业报告+白皮书合集

收集70+报告与白皮书,了解行业最新动态!
图片

06 90+份面试题/经验

AI大模型岗位面试经验总结(谁学技术不是为了赚$呢,找个好的岗位很重要)图片
在这里插入图片描述

07 deepseek部署包+技巧大全

在这里插入图片描述

由于篇幅有限

只展示部分资料

并且还在持续更新中…

真诚无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发

在这里插入图片描述

Logo

有“AI”的1024 = 2048,欢迎大家加入2048 AI社区

更多推荐