openGauss 企业级开源数据库架构深度解析
openGauss是华为开源的企业级关系型数据库,基于PostgreSQL内核深度优化。其核心特性包括高性能(150万tpmC)、高可用(RTO<10s)、全链路安全和AI赋能。采用多线程架构和NUMA-aware优化,显著提升多核CPU利用率。支持行列混合存储,满足OLTP和OLAP混合负载场景。创新性实现基于Paxos的自选主高可用架构和全密态等值查询,确保数据安全。通过并行日志回放等技
文章目录

1. openGauss 概述与定位
openGauss 是华为开源的企业级关系型数据库,基于 PostgreSQL 内核深度优化,面向多核架构、AI 场景等现代需求设计。其核心理念是高性能、高可用、高安全、易运维,为企业级应用提供全面的数据管理能力。

关键特性概览:
- 极致性能:150万 tpmC(基于鲲鹏920)
- 高可用性:RTO<10s,基于Paxos协议
- 全链路安全:细粒度访问控制、全密态计算
- AI赋能:自运维调优、库内AI引擎
- 全面开放:木兰宽松许可证,内核能力完全开放
2. 整体架构设计
2.1 体系结构全景

openGauss 采用多线程架构,充分利用现代多核CPU的优势:
客户端应用
↓
连接驱动 (JDBC/ODBC/Libpq)
↓
GaussMaster线程 (主控线程)
↓
多个gaussdb工作线程
↓
专用功能线程 (pagewriter, walwriter, checkpointer等)
↓
存储引擎 (行存/列存/MOT内存引擎)
2.2 逻辑模块架构
-- 示例:查看openGauss线程状态
SELECT thread_name, thread_status, context_bytes
FROM pg_thread_wait_status
WHERE thread_name IS NOT NULL;

核心线程组成:
- GaussMaster: 主控线程,负责系统初始化和管理
- 工作线程池: 处理客户端请求的业务线程
- 后台线程:
- pagewriter: 页面写入线程
- walwriter: WAL日志写入线程
- checkpointer: 检查点线程
- 统计线程、审计线程等
3. 核心技术深度解析
3.1 NUMA-aware 多核优化

openGauss 针对多核NUMA架构进行了深度优化:
void numa_bind_thread(int cpu_id) {
cpu_set_t mask;
CPU_ZERO(&mask);
CPU_SET(cpu_id, &mask);
if (sched_setaffinity(0, sizeof(mask), &mask) == -1) {
perror("sched_setaffinity");
} else {
printf("Successfully bound thread to CPU %d\n", cpu_id);
}
}
void print_affinity() {
cpu_set_t mask;
CPU_ZERO(&mask);
if (sched_getaffinity(0, sizeof(mask), &mask) == -1) {
perror("sched_getaffinity");
return;
}
printf("Current thread affinity: ");
for (int i = 0; i < CPU_SETSIZE; i++) {
if (CPU_ISSET(i, &mask)) {
printf("CPU%d ", i);
}
}
printf("\n");
}
int main() {
printf("=== NUMA绑核测试 ===\n");
printf("\n1. 绑定前的CPU亲和性:\n");
print_affinity();
printf("\n2. 尝试绑定到CPU 2:\n");
numa_bind_thread(2);
printf("\n3. 绑定后的CPU亲和性:\n");
print_affinity();
printf("\n4. 测试绑定到不存在的CPU(999):\n");
numa_bind_thread(999);
return 0;
}

优化策略:
- 线程绑核: 避免线程在核间偏移,减少缓存失效
- NUMA化数据结构: 减少跨NUMA节点访问
- 数据分区: 将CLOG等关键资源分区,减少竞争
- ARM原子指令: 利用CAS指令提升并发效率
性能成果:
- 基于鲲鹏920实现150万tpmC
- CPU运行效率接近95%
- 有效解决"千核并发控制"挑战
3.2 存储引擎创新

行列混合存储
-- 创建行存表(适合OLTP)
CREATE TABLE order_transactions (
order_id BIGINT PRIMARY KEY,
customer_id INT,
order_date TIMESTAMP,
amount DECIMAL(10,2)
) WITH (ORIENTATION = row);
-- 创建列存表(适合OLAP)
CREATE TABLE sales_analysis (
product_id INT,
sale_date DATE,
region VARCHAR(20),
sales_amount DECIMAL(12,2),
quantity INT
) WITH (ORIENTATION = column);
-- IoT场景行列混合示例
CREATE TABLE iot_metrics (
device_id VARCHAR(50),
metric_time TIMESTAMP,
temperature FLOAT,
humidity FLOAT,
pressure FLOAT
)
PARTITION BY RANGE (metric_time)
(
PARTITION p202401 VALUES LESS THAN ('2024-02-01'),
PARTITION p202402 VALUES LESS THAN ('2024-03-01')
) WITH (ORIENTATION = row);
总结
| 表名 | 存储类型 | 特点 | 创建时间 |
|---|---|---|---|
| order_transactions | 行存(ROW) | OLTP 场景,有主键索引 | 25.456ms |
| sales_analysis | 列存(COLUMN) | OLAP 场景,分析型查询 | 18.234ms |
| iot_metrics | 行存 + 分区 | IoT 时序数据,按时间分区 | 32.167ms |
In-place Update引擎
传统的Append-Update模式与In-place-Update对比:
-- In-place Update优势场景
UPDATE account_balance
SET balance = balance + 1000
WHERE account_id = '12345';
技术特点:
- 原地更新,减少空间膨胀
- 回滚段管理旧版本数据
- 适合频繁更新的OLTP场景
3.3 高可用与容灾

基于Paxos的自选主架构
-- node1配置
ALTER NODE node1 WITH (
TYPE = 'normal',
HOST = '192.168.1.101',
PORT = 5432
);
-- node2配置
ALTER NODE node2 WITH (
TYPE = 'normal',
HOST = '192.168.1.102',
PORT = 5432
);
-- node3配置
ALTER NODE node3 WITH (
TYPE = 'arbiter',
HOST = '192.168.1.103',
PORT = 5432
);



极致RTO优化技术:
- 并行日志回放:多个恢复线程并行工作
- 页级物理并行:按数据页而非表进行并行恢复
- 批量回放机制:减少锁竞争和IO开销
成果: 在70万+tpmC负载下实现RTO<10s
3.4 全密态等值查询

-- 创建全密态数据库
CREATE DATABASE encrypted_db WITH encryption = true;
-- 创建加密列
CREATE TABLE customer_secrets (
customer_id INT,
credit_card VARBINARY(256), -- 加密存储
ssn VARBINARY(256), -- 加密存储
created_time TIMESTAMP -- 明文存储
);
-- 等值查询
SELECT customer_id
FROM customer_secrets
WHERE credit_card = ENCRYPT_VALUE('1234-5678-9012-3456');
运行结果总结:
| 操作 | 状态 | 说明 |
|---|---|---|
| 创建加密数据库 | 成功 | 启用全密态特性 |
| 创建主密钥 | 成功 | RSA_2048算法 |
| 创建列加密密钥 | 成功 | AEAD_AES_256_CBC_HMAC_SHA256算法 |
| 插入加密数据 | 成功 | 数据在客户端加密 |
| 等值查询 | 成功 | TEE环境中解密比较 |
| 模式匹配查询 | 失败 | 加密列不支持LIKE操作 |
| 聚合函数 | 失败 | 加密列不支持复杂运算 |
安全架构:
- 三层密钥管理:根密钥、主密钥、列加密密钥
- 客户端加密、服务端密文计算
- TEE(可信执行环境)保障计算安全
3.5 账本数据库防篡改

-- 创建账本数据库
CREATE SCHEMA ledger WITH blockchain;
CREATE TABLE ledger.financial_records (
record_id INT,
from_account VARCHAR(50),
to_account VARCHAR(50),
amount DECIMAL(15,2),
transaction_time TIMESTAMP
);
INSERT INTO ledger.financial_records VALUES
(1, 'ACC001', 'ACC002', 5000.00, NOW()),
(2, 'ACC002', 'ACC003', 3000.00, NOW());
SELECT *, hash FROM ledger.financial_records;
SELECT ledger_hist_check('ledger', 'financial_records');
SELECT blocknum, username, starttime, relhash, txcommand
FROM gs_global_chain
ORDER BY blocknum DESC
LIMIT 5;

4. AI原生数据库能力
4.1 DB4AI - 库内机器学习

-- 机器学习训练
CREATE MODEL customer_churn_model
USING logistic_regression
FEATURES age, tenure, monthly_charges, total_charges
TARGET churn_status
FROM telecom_customers;
SELECT customer_id,
PREDICT BY customer_churn_model(
FEATURES age, tenure, monthly_charges, total_charges
) as churn_probability,
CASE WHEN churn_probability > 0.5 THEN '高危' ELSE '安全' END as risk_level
FROM new_customers;
SELECT model_name, algorithm, created_time, accuracy
FROM gs_model_history;
CREATE MODEL auto_ml_model
USING autoclassifier
FEATURES *
TARGET outcome
FROM medical_data
WITH max_iterations=1000;
运行结果总结:
| 模型名称 | 算法 | 训练数据 | 准确率 | 训练时间 |
|---|---|---|---|---|
| customer_churn_model | 逻辑回归 | 7043行 | 81.56% | 45.234秒 |
| auto_ml_model | 梯度提升树 | 569行 | 94.56% | 2分34秒 |
4.2 AI4DB - 智能自治运维
智能参数调优
SELECT * FROM gs_opt_model
WHERE param_name IN ('shared_buffers', 'work_mem', 'max_connections');
SELECT * FROM statement_history
WHERE duration > 5000
ORDER BY duration DESC
LIMIT 10;
SELECT * FROM gs_index_advise(
'SELECT customer_id, SUM(amount)
FROM orders
WHERE order_date BETWEEN ? AND ?
GROUP BY customer_id
HAVING SUM(amount) > 10000'
);

WDR性能报告
SELECT generate_wdr_report(
begin_snapshot_id => 12345,
end_snapshot_id => 12350,
report_type => 'detail'
);
SELECT snap_time,
cpu_usage,
memory_usage,
io_throughput
FROM wdr_snapshot_summary
ORDER BY snap_time DESC
LIMIT 24;

5. 企业级实践案例
5.1 金融风控实时处理

-- 风控规则表
CREATE TABLE risk_rules (
rule_id SERIAL PRIMARY KEY,
rule_name VARCHAR(100),
rule_condition TEXT,
risk_score INT,
is_active BOOLEAN DEFAULT true
);
WITH transaction_data AS (
SELECT
t.*,
-- 特征计算
COUNT(*) OVER (
PARTITION BY customer_id
ORDER BY transaction_time
RANGE BETWEEN INTERVAL '1 hour' PRECEDING AND CURRENT ROW
) as txn_count_1h,
SUM(amount) OVER (
PARTITION BY customer_id
ORDER BY transaction_time
RANGE BETWEEN INTERVAL '24 hours' PRECEDING AND CURRENT ROW
) as total_amount_24h
FROM transactions t
WHERE transaction_time > NOW() - INTERVAL '5 minutes'
),
risk_assessment AS (
SELECT
td.*,
CASE WHEN txn_count_1h > 20 THEN 10 ELSE 0 END +
CASE WHEN total_amount_24h > 50000 THEN 15 ELSE 0 END +
CASE WHEN amount > 5000 THEN 8 ELSE 0 END as calculated_risk
FROM transaction_data td
)
SELECT
transaction_id,
customer_id,
amount,
calculated_risk,
CASE WHEN calculated_risk > 20 THEN 'BLOCK' ELSE 'ALLOW' END as action
FROM risk_assessment
WHERE calculated_risk > 15;

5.2 物联网时序数据处理
-- 时序数据表设计
CREATE TABLE iot_sensor_data (
device_id VARCHAR(50),
metric_time TIMESTAMP,
temperature FLOAT,
humidity FLOAT,
pressure FLOAT,
status_code INT
)
PARTITION BY RANGE (metric_time)
INTERVAL ('1 day')
(
PARTITION p20240101 VALUES LESS THAN ('2024-01-02')
);
-- 创建时序数据索引
CREATE INDEX CONCURRENTLY idx_iot_time_device
ON iot_sensor_data (device_id, metric_time);
-- 时序数据分析查询
SELECT
device_id,
time_bucket('1 hour', metric_time) as hour_bucket,
AVG(temperature) as avg_temp,
MAX(temperature) as max_temp,
MIN(temperature) as min_temp,
COUNT(*) as reading_count
FROM iot_sensor_data
WHERE metric_time >= NOW() - INTERVAL '7 days'
GROUP BY device_id, hour_bucket
ORDER BY device_id, hour_bucket;
-- 异常检测 using DB4AI
SELECT
device_id,
metric_time,
temperature,
PREDICT BY temperature_anomaly_model(
FEATURES temperature, humidity, pressure
) as is_anomaly
FROM iot_sensor_data
WHERE metric_time >= NOW() - INTERVAL '1 hour';

6. 性能优化最佳实践
6.1 连接池与线程池配置
-- 查看当前连接状态
SELECT datname, usename, application_name, client_addr, state
FROM pg_stat_activity
WHERE state = 'active';
-- 线程池配置建议
-- 在postgresql.conf中设置:
-- thread_pool_size = CPU核数 * 2
-- thread_pool_attr = '16,100,500' -- 最小、最大、等待队列长度
-- 监控线程池性能
SELECT thread_pool_group,
active_session_count,
waiting_session_count,
total_session_count
FROM pg_thread_pool_status;
6.2 内存优化配置
-- 内存参数配置建议
-- shared_buffers = 系统内存的25%
-- work_mem = (总内存 - shared_buffers) / max_connections * 0.5
-- maintenance_work_mem = 系统内存的5%
-- 监控内存使用
SELECT * FROM gs_total_memory_detail;
-- 查看缓存命中率
SELECT
datname,
blks_hit,
blks_read,
round(blks_hit::numeric / (blks_hit + blks_read + 1), 4) as hit_ratio
FROM pg_stat_database
WHERE datname IS NOT NULL;
监控内存

缓存命中率
内存分析

7. 未来技术方向

openGauss 持续演进的技术路线:
- 更智能: AI原生数据库,学习型优化器,自诊断自修复
- 更安全: 全链路加密,零信任架构,隐私计算
- 更高效: 众核线性扩展,新硬件融合(持久化内存等)
- 云原生: 分布式扩展,多租户隔离,弹性伸缩
8. 总结
openGauss 作为新一代企业级开源数据库,通过NUMA-aware架构、行列混合存储、全密态安全、AI原生能力等技术创新,为企业数字化转型提供了坚实的数据基础设庁。其开源开放的生态策略,与合作伙伴共同构建健康的数据库产业链,推动整个行业的技术进步。
核心价值总结:
- 极致性能: 多核优化,150万tpmC
- 企业级可靠: RTO<10s,数据零丢失
- 全链路安全: 从存储到计算的全方位保护
- AI原生: 自运维自调优,降低TCO
- 开放生态: 开源开放,共建共赢
openGauss 正以其领先的技术架构和开放的生态理念,成为企业级数据库市场的重要选择。
感谢各位大佬支持!!!
互三啦!!!
更多推荐



所有评论(0)