n8n智能体开发:字符文本分割节点
使用字符文本分割节点可以根据字符来分割文档数据。
·
使用字符文本分割节点可以根据字符来分割文档数据。
本页将介绍字符文本分割节点的参数配置,并提供更多相关资源的链接。
/// 注意 | 子节点中的参数解析 子节点在使用表达式处理多个项目时的行为与其他节点不同。
大多数节点(包括根节点)会接收任意数量的输入项,处理这些项目,然后输出结果。您可以使用表达式来引用输入项,节点会依次为每个项目解析表达式。例如,给定五个 name 值作为输入,表达式 {{ $json.name }} 会依次解析为每个名称。
而在子节点中,表达式总是解析为第一个项目。例如,给定五个 name 值作为输入,表达式 {{ $json.name }} 总是解析为第一个名称。 ///
节点参数#
- 分隔符: 选择用于将文档分割为独立项目的分隔符
- 分块大小: 输入每个分块包含的字符数
- 分块重叠: 输入分块之间的重叠字符数
模板与示例#
Browse 字符文本分割器 integration templates, or search all templates
相关资源#
更多关于该服务的信息,请参考 LangChain 的文本分割器文档 和 LangChain 字符文本分割的 API 文档。
查看 n8n 的高级 AI 文档。
AI glossary#
- completion: Completions are the responses generated by a model like GPT.
- hallucinations: Hallucination in AI is when an LLM (large language model) mistakenly perceives patterns or objects that don't exist.
- vector database: A vector database stores mathematical representations of information. Use with embeddings and retrievers to create a database that your AI can access when answering questions.
- vector store: A vector store, or vector database, stores mathematical representations of information. Use with embeddings and retrievers to create a database that your AI can access when answering questions.
《DeepSeek高效数据分析:从数据清洗到行业案例》聚焦DeepSeek在数据分析领域的高效应用,是系统讲解其从数据处理到可视化全流程的实用指南。作者结合多年职场实战经验,不仅深入拆解DeepSeek数据分析的核心功能——涵盖数据采集、清洗、预处理、探索分析、建模(回归、聚类、时间序列等)及模型评估,更通过金融量化数据分析、电商平台数据分析等真实行业案例,搭配报告撰写技巧,提供独到见解与落地建议。助力职场人在激烈竞争中凭借先进技能突破瓶颈,实现职业进阶,开启发展新篇。

更多推荐


所有评论(0)