本文详细介绍了Dify开源大模型应用开发平台的知识库搭建全流程。从Dify的基本概念、本地部署方法,到知识库的分段模式选择(通用模式与父子模式)、索引方法与检索设置(高质量与经济模式),再到基于知识库的问答系统创建,全面展示了如何利用Dify构建企业级AI知识库。文章强调Dify通过知识库索引优化、多模态支持和动态参数校验,为企业提供了安全、高效、经济的私有数据智能管理解决方案。

一、Dify基本概念

Dify 是一款开源的大模型应用开发平台,旨在帮助开发者快速构建生产级生成式 AI 应用。它集成了模型管理、提示词工程、数据检索、工作流编排和运维监控等核心功能,支持数百种开源及商业大模型(如 Llama3、GPT-4、Claude 等),并提供可视化工作流设计、RAG(检索增强生成)管道、Agent 智能体框架等特色能力。其核心特点包括:

  1. 低代码/无代码界面:通过可视化编排 Prompt、连接知识库、配置 Agent 工作流,降低 AI 开发门槛。

  2. 技术栈整合:内置 RAG 管道、多模型支持(如 OpenAI、本地模型)、可观测性工具,避免重复开发基础组件。

  3. 开源与自托管:代码完全开放,支持 Docker 私有化部署,确保数据隐私与合规性。

二、Dify本地部署

  1. Docker部署

可参考文章[【超详细】DeepSeek+RAGFlow知识库搭建全流程,建议收藏学习!]中Docker部署步骤。

  1. Dify部署

硬件要求:CPU ≥ 2 核,RAM ≥ 4GB(推荐 8GB 以上以运行中等模型)

# 克隆仓库
git clone https://github.com/langgenius/dify.git
cd dify/docker
# 复制环境配置
cp .env.example .env
# 启动容器
sudo docker compose up -d

验证服务:访问 http://localhost/install,初始化管理员账号。

  1. 模型配置

在“设置”—“模型供应商”中自定义配置所需的大模型API-KEY,类型包括Chat、Text Embedding、Rerank模型。

三、基于Dify的知识库搭建

  1. Dify知识库介绍

Dify 知识库系统通过RAG(检索增强生成)技术实现,核心流程:

LLM 接收到用户的问题后,将首先基于关键词在知识库内检索内容。知识库将根据关键词,召回相关度排名较高的内容区块,向 LLM 提供关键上下文以辅助其生成更加精准的回答。

开发者可以通过此方式确保 LLM 不仅仅依赖于训练数据中的知识,还能够处理来自实时文档和数据库的动态数据,从而提高回答的准确性和相关性。

支持多种文本类型,例如:

  • 长文本内容(TXT、Markdown、DOCX、HTML、JSON 甚至是 PDF)
  • 结构化数据(CSV、Excel 等)
  • 在线数据源(网页爬虫、Notion 等)

将文件上传至“知识库”即可自动完成数据处理。如果内部已建有独立知识库,可以通过连接外部知识库与 Dify 建立连接。

  1. 知识库搭建

“知识库”—“创建知识库”—“选择数据源”,选择作为知识库的来源。

2.1 指定分段模式

知识库支持两种分段模式:通用模式 与 父子模式。如果你是首次创建知识库,建议选择父子模式。

(1)通用模式

系统按照用户自定义的规则将内容拆分为独立的分段,在该模式下,需要根据不同的文档格式或场景要求,参考以下设置项,设置文本的分段规则。

分段标识符:如\n,可以遵循正则表达式语法自定义分块规则,系统将在文本出现分段标识符时自动执行分段。下图是不同语法的文本分段效果:

分段最大长度:指定分段内的文本字符数最大上限,超出该长度时将强制分段。默认值为 500 Tokens,分段长度的最大上限为 4000 Tokens;

分段重叠长度:指的是在对数据进行分段时,段与段之间存在一定的重叠部分。这种重叠可以帮助提高信息的保留和分析的准确性,提升召回效果。建议设置为分段长度 Tokens 数的 10-25%;

配置完成后,点击“预览区块”即可查看分段后的效果。可以直观的看到每个区块的字符数。如果重新修改了分段规则,需要重新点击按钮以查看新的内容分段。

若同时批量上传了多个文档,轻点顶部的文档标题,快速切换并查看其它文档的分段效果。

(2)父子模式

与通用模式相比,父子模式采用双层分段结构来平衡检索的精确度和上下文信息,让精准匹配与全面的上下文信息二者兼得。

其中,父区块(Parent-chunk)保持较大的文本单位(如段落),提供丰富的上下文信息;子区块(Child-chunk)则是较小的文本单位(如句子),用于精确检索。系统首先通过子区块进行精确检索以确保相关性,然后获取对应的父区块来补充上下文信息,从而在生成响应时既保证准确性又能提供完整的背景信息。可以通过设置分隔符和最大长度来自定义父子区块的分段方式。

例如在 AI 智能客服场景下,用户输入的问题将定位至解决方案文档内某个具体的句子,随后将该句子所在的段落或章节,联同发送至 LLM,补全该问题的完整背景信息,给出更加精准的回答。

其基本机制包括:

子分段匹配查询:

  • 将文档拆分为较小、集中的信息单元(例如一句话),更加精准地匹配用户所输入的问题。
  • 子分段能快速提供与用户需求最相关的初步结果。

父分段提供上下文:

  • 将包含匹配子分段的更大部分(如段落、章节甚至整个文档)视作父分段并提供给大语言模型(LLM)。
  • 父分段能为 LLM 提供完整的背景信息,避免遗漏重要细节,帮助 LLM 输出更贴合知识库内容的回答。

配置完成后,点击“预览区块”即可查看分段后的效果。可以查看父分段的整体字符数。背景标蓝的字符为子分块,同时显示当前子段的字符数。

(3)两种模式的区别

两者的主要区别在于内容区块的分段形式。通用模式的分段结果为多个独立的内容分段,而父子模式采用双层结构进行内容分段,即单个父分段的内容(文档全文或段落)内包含多个子分段内容(句子)。

不同的分段方式将影响LLM对于知识库内容的检索效果。在相同文档中,采用父子检索所提供的上下文信息会更全面,且在精准度方面也能保持较高水平,大大优于传统的单层通用检索方式。

2.2 索引方法与检索设置

提供高质量与经济两种索引方法,其中分别提供不同的检索设置选项:

在高质量模式下,使用Embedding嵌入模型将已分段的文本块转换为数字向量,帮助更加有效地压缩与存储大量文本信息;使得用户问题与文本之间的匹配能够更加精准。

将内容块向量化并录入至数据库后,需要通过有效的检索方式调取与用户问题相匹配的内容块。高质量模式提供向量检索、全文检索和混合检索三种检索设置。

(1)向量检索

定义:向量化用户输入的问题并生成查询文本的数学向量,比较查询向量与知识库内对应的文本向量间的距离,寻找相邻的分段内容。

Rerank模型:默认关闭。开启后将使用第三方Rerank模型再一次重排序由向量检索召回的内容分段,以优化排序结果。帮助LLM获取更加精确的内容,辅助其提升输出的质量。

TopK:用于筛选与用户问题相似度最高的文本片段。系统同时会根据选用模型上下文窗口大小动态调整片段数量。默认值为 3,数值越高,预期被召回的文本分段数量越多。

Score阈值:用于设置文本片段筛选的相似度阈值,只召回超过设置分数的文本片段,默认值为 0.5。数值越高说明对于文本与问题要求的相似度越高,预期被召回的文本数量也越少。

(2)全文检索

定义:关键词检索,即索引文档中的所有词汇。用户输入问题后,通过明文关键词匹配知识库内对应的文本片段,返回符合关键词的文本片段;类似搜索引擎中的明文检索。

Rerank模型:默认关闭。开启后将使用第三方Rerank模型再一次重排序由全文检索召回的内容分段,以优化排序结果。向LLM发送经过重排序的分段,辅助其提升输出的内容质量。

(3)混合检索

定义:同时执行全文检索和向量检索,或Rerank模型,从查询结果中选择匹配用户问题的最佳结果。

权重设置:允许用户赋予语义优先和关键词优先自定义的权重。关键词检索指的是在知识库内进行全文检索(Full Text Search),语义检索指的是在知识库内进行向量检索(Vector Search)。

Rerank模型:默认关闭,开启后将使用第三方Rerank模型再一次重排序由混合检索召回的内容分段,以优化排序结果。

  1. 知识库使用

运用Dify内置的应用模板创建基于知识库的问答系统,“工作室”—“从应用模板创建”—“Knowledge Retreival + Chatbot”:

在“Knowledge Retrieval”组件配置知识库名称和召回设置:

在“LLM”组件中设置模型类型及将知识库检索结果作为上下文:

设置完成后进行预览测试,可在工作流中查看每一步的运行情况,在“Knowledge Retrieval”输出中可查看知识库的检索结果:

总结

Dify通过知识库索引优化、多模态支持和动态参数校验,构建了企业级 AI 知识库的完整技术栈。其本地化部署方案在数据安全(GDPR/HIPAA 合规)、性能和成本上具有显著优势。无论是医疗、金融还是制造业,均可通过 Dify 实现私有数据的智能管理与精准应用。建议企业结合自身业务场景,灵活运用 FireCrawl 爬取、Xinference 模型部署等扩展方案,打造贴合需求的行业级知识库系统。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

在这里插入图片描述

为什么要学习大模型?

我国在A大模型领域面临人才短缺,数量与质量均落后于发达国家。2023年,人才缺口已超百万,凸显培养不足。随着AI技术飞速发展,预计到2025年,这一缺口将急剧扩大至400万,严重制约我国AI产业的创新步伐。加强人才培养,优化教育体系,国际合作并进是破解困局、推动AI发展的关键。

在这里插入图片描述

在这里插入图片描述

大模型入门到实战全套学习大礼包

1、大模型系统化学习路线

作为学习AI大模型技术的新手,方向至关重要。 正确的学习路线可以为你节省时间,少走弯路;方向不对,努力白费。这里我给大家准备了一份最科学最系统的学习成长路线图和学习规划,带你从零基础入门到精通!

img


2、大模型学习书籍&文档

学习AI大模型离不开书籍文档,我精选了一系列大模型技术的书籍和学习文档(电子版),它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。

在这里插入图片描述

3、AI大模型最新行业报告

2025最新行业报告,针对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。

img

4、大模型项目实战&配套源码

学以致用,在项目实战中检验和巩固你所学到的知识,同时为你找工作就业和职业发展打下坚实的基础。

img

5、大模型大厂面试真题

面试不仅是技术的较量,更需要充分的准备。在你已经掌握了大模型技术之后,就需要开始准备面试,我精心整理了一份大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余

img

适用人群

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范
第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署
第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建
第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

Logo

有“AI”的1024 = 2048,欢迎大家加入2048 AI社区

更多推荐