Agent不稀奇?能“自主思考、执行、复盘“的才是真干货!收藏这篇就够了
文章介绍了大模型Agent与Workflow的区别,对比分析了5种主流Agent框架的特点和适用场景。通过客服案例说明,当问题复杂、需要跨系统查证且需动态决策时,Agent框架优于纯Workflow。文章强调Agent是让智能系统从"执行命令"走向"理解目标"的全新思维方式,为技术选型提供实用指导。
「Agent不稀奇,能“自己想、自己干、自己复盘”的才是好Agent」可一到落地,名词、框架和坑一起涌来:设计模式、强自治、可控流程、多代理协作… 到底该不该用 Agent?该选哪一类框架?需要用到什么程度?这篇文章用直观的图表、清晰的示例,为你讲清什么是Agent、什么场景适合使用Agent以及各类主流Agent框架,希望能帮各位少走弯路,迅速判断技术路径。
1.Workflow和Agent的区别

2.Agent框架选择
核心依赖Github上Star数以及市场热度,综合选取5款Agent框架:
1.AutoGPT:Github 17.8w Star
2.LangGraph: Github 13.1w Star
3.Dify: Github 11.2w Star
4.CrewAI*Github 3w Star
5.AutoGen:微软开源 Github 5w Star
3.各Agent框架对比结论



4.为什么需要使用Agent框架
结论:只要“问题不可完全穷举、要跨多系统查证、并且需要在对话中澄清/协商/决策”,就更应该用 Agent 框架,而不是纯 Workflow。
为什么?用一个真实的ToC场景客服链路来说明。
4.1纯 Workflow 在智能客服里的“天花板”
Workflow(无论是 Dify 的可视化编排,还是 LangGraph 的状态机)非常适合步骤确定 + 条件有限的流程,比如:
1.查询订单 → 格式化答复
2.退货→生成标签→发通知
3.FAQ 检索→返回片段
一旦进入长尾问题,Workflow 就会遇到“分支爆炸”:
例:同一条“包裹没到”诉求,可能要综合 ①承运商状态 ②发货 SLA ③节假日政策 ④地址异常 ⑤是否会员 ⑥是否已报缺货 ⑦是否已部分签收 ⑧是否叠加优惠券/补发 等。
如果你用固定分支描述:
假设有 5 个意图 × 6 种物流状态 × 3 种用户等级 × 3 个政策时段(平日/大促/假期) × 3 种地理区域,共5×6×3×3×3=810 条潜在路径。
这还没算异常(报损、拒收、欺诈信号)与“对话澄清”的分支。维护成本和上线速度都会被拖垮。此外,Workflow 对 对话中的“澄清—再决策—再行动 并不天然友好,需要把每一步提问、回答、重试都画成节点,复杂而脆弱。
4.2Agent 框架解决的核心问题
以 AutoGen/CrewAI 这类 Agent 框架为例,它们把“在对话里动态规划与调用工具”作为第一性能力:
场景:用户说“我 8 月 1 号下的单今天还没到,收件地址其实要换,而且我被重复扣费了。”
一个合格的客服 Agent 团队会做什么?
1.意图识别 + 澄清
● Planner Agent:拆出多意图(物流异常、改址、计费异常),先问关键澄清(订单号/新地址/扣费凭证)。
2.跨系统取证
● OMS/物流工具:查轨迹与 SLA;
● 计费/支付工具:核对重复扣款交易;
● CRM:看是否 VIP、是否有历史补偿记录。
3.政策推理与合规
● Policy/Critic Agent:套用“假期延误 + VIP + 改址”的组合条款,评估可给的补偿区间、是否可免费改址、是否触发风控人工复核。
4.方案生成与协商
● 提出“改址 + 走加急补发 / 或原包裹拦截 + 退款差额 + 账单冲正”的可行方案,并在对话中按用户反馈实时调整。
5.执行与闭环
● 调用工单/票据工具,落账/发券/改单/寄件,写入 CRM 备注;
● 生成总结,告知时限与跟踪号;
● 若任一步失败,自动选择备选策略或升级人工。
这些动作里,很多步骤**无法事先“画”成固定分支,需要在对话上下文里做决策、需要跨工具动态组合、需要“问一句 → 查一下 → 再决定”,**这正是 Agent 的强项。
5.各Agent详细介绍
5.1AutoGPT
简介:AutoGPT是第一个爆火的自主AI Agent框架,提供一系列工具让用户构建和使用自治代理。其功能涵盖代理创建模块“Forge”、性能评测基准agbenchmark、排行榜以及易用的UI和CLI接口。
主要特点:AutoGPT支持“思考-行动-反馈-学习”的循环,让代理不断生成子任务并执行。并且拥有丰富的插件和工具接口,允许代理访问浏览器、文件系统、API等资源,从而完成复杂的链式任务。
典型应用场景:需要让Agent自动拆解目标并执行的,如市场调研、行程规划、代码编写等
优势与不足:

使用示例:基于AutoGPT让Agent帮我写一篇介绍AutoGPT的文章
1.创建Agent及配置名称、角色以及目标

2.Agent 自主思考、规划、执行

3.最终输出

5.2LangGraph
简介:LangGraph 是由 LangChain 团队推出的有状态、持久运行、多智能体应用的编排框架。核心将Agent建模成一个图(Graph):每个节点是计算步骤(LLM 调用、工具函数、任意 Python 代码等),边控制流转(含条件与循环),并最终实现既定目标。并且在今年6月提供了预构建模式,对常见的多智能体场景提供了抽象封装,开发者只需定义少量参数(如参与的子智能体、主体提示词等)即可快速生成完整的多 Agent 协作系统。
Graph和预构建模式的示意图:


主要特点:支持图式编排、可人工干预、可中断/续跑。LangGraph可形成可控的分支/循环流程,可在每个节点中加入人工干预环节,适合需要人工审批/修订的业务场景,并且基于持久化状态可方便中断、续跑、回溯。
典型应用场景:可明确拆解任务步骤的场景,如RAG类、文章生成、日程助手等。
优势与不足:

使用示例:基于LangGraph让Agent帮我写一篇介绍LangGraph的文章
1.构建工作流(Workflow)

附工作流运行逻辑:

2.最终输出

5.3Dify
简介:Dify(Do It For You)是一个开源的低代码平台,旨在简化大模型(LLM)驱动的AI应用开发与部署。它融合了“后端即服务 (BaaS)”与 LLMOps 概念,提供涵盖模型接入、提示设计、知识库检索、智能代理、数据监控等在内的一站式解决方案。通过直观的可视化界面和预构建组件,开发者和非技术人员都可以快速构建如聊天机器人、内容生成、数据分析等各类生成式AI应用。
主要特点:低代码、可视化工作流构建、检索增强生成(RAG)管道、开放工具市场
典型应用场景:可明确拆解任务步骤的场景,如RAG类、文章生成、日程助手等

使用示例:
1.工作流Workflow类型

2.Agent类型(Function Call)

5.4CrewAI
简介:CrewAI 是一个多智能体(multi-agent)编排框架,其核心理念是让多个具备特定角色的 AI 代理协同合作(组成“crew”团队)来完成复杂任务。每个代理被赋予特定的角色、目标和背景知识,通过相互分工与配合,自动地进行任务委派和问询,最终以团队形式完成用户交给的工作。
主要特点:多工具及生态集成、支持Workflow和AI Agent两种模式
优势与不足:

使用示例:研究AIagent领域的最新进展



5.5AutoGen
简介:AutoGen 是微软开源的一个面向 Agentic AI(代理式人工智能)的编程框架,用于构建 AI 智能体并促进多个智能体协作完成复杂任务。AutoGen 支持事件驱动的分布式架构,具有良好的可扩展性和弹性,可用于搭建可自主行动或在人类监督下运行的多代理 AI 系统。
主要特点:微软开源、原生多Agent支持、灵活对话控制
优势与不足:

Swarm模式下的机票退订助手示例:

6.总结
本篇文章主要介绍了目前 WorkFlow 和 Agent 的区别,以及什么时候应该采用 Agent 框架:当问题复杂、长尾且多变,Agent 才是主力。同时也简要的介绍了目前几类框架如AutoGPT、LangGraph、Dify、CrewAI、AutoGen,希望能在技术路线的选择与框架选型上帮助到各位读者。
腾讯云TDAI(TencentDB AI Service,简称TDAI)团队也在积极探索数据库与 AI 的结合,并正式推出数据库AI服务,为赋予 Agent 长上下文理解与个性化交互能力,腾讯云在数据库AI服务中推出面向 Agent 记忆场景的产品——Agent Memory,负责存储、检索并管理历史交互信息,让AI能够记住并运用这些信息,从而在持续的互动中表现出更强的连贯性、上下文理解力和个性化服务能力。
可以看到,Agent 不只是新的技术名词,更是一种全新的思维方式——让智能系统从“执行命令”走向“理解目标”。未来,在复杂、多变的业务世界中,腾讯云TDAI团队将持续探索从底层存储、索引到记忆调用的完整链路能力,为客户提供 Agent 的基础组件,奠定AI转型的坚实起点。
那么,如何系统的去学习大模型LLM?
作为一名深耕行业的资深大模型算法工程师,我经常会收到一些评论和私信,我是小白,学习大模型该从哪里入手呢?我自学没有方向怎么办?这个地方我不会啊。如果你也有类似的经历,一定要继续看下去!这些问题啊,也不是三言两语啊就能讲明白的。
所以我综合了大模型的所有知识点,给大家带来一套全网最全最细的大模型零基础教程。在做这套教程之前呢,我就曾放空大脑,以一个大模型小白的角度去重新解析它,采用基础知识和实战项目相结合的教学方式,历时3个月,终于完成了这样的课程,让你真正体会到什么是每一秒都在疯狂输出知识点。
由于篇幅有限,⚡️ 朋友们如果有需要全套 《2025全新制作的大模型全套资料》,扫码获取~
👉大模型学习指南+路线汇总👈
我们这套大模型资料呢,会从基础篇、进阶篇和项目实战篇等三大方面来讲解。

👉①.基础篇👈
基础篇里面包括了Python快速入门、AI开发环境搭建及提示词工程,带你学习大模型核心原理、prompt使用技巧、Transformer架构和预训练、SFT、RLHF等一些基础概念,用最易懂的方式带你入门大模型。
👉②.进阶篇👈
接下来是进阶篇,你将掌握RAG、Agent、Langchain、大模型微调和私有化部署,学习如何构建外挂知识库并和自己的企业相结合,学习如何使用langchain框架提高开发效率和代码质量、学习如何选择合适的基座模型并进行数据集的收集预处理以及具体的模型微调等等。
👉③.实战篇👈
实战篇会手把手带着大家练习企业级的落地项目(已脱敏),比如RAG医疗问答系统、Agent智能电商客服系统、数字人项目实战、教育行业智能助教等等,从而帮助大家更好的应对大模型时代的挑战。
👉④.福利篇👈
最后呢,会给大家一个小福利,课程视频中的所有素材,有搭建AI开发环境资料包,还有学习计划表,几十上百G素材、电子书和课件等等,只要你能想到的素材,我这里几乎都有。我已经全部上传到CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】
相信我,这套大模型系统教程将会是全网最齐全 最易懂的小白专用课!!
更多推荐


所有评论(0)